首页     开始     To Survive in the Universe    
Inhabited Sky
    News@Sky     天文图片     收集     论坛     Blog New!     常见问题     新闻     登录  

TYC 5278-544-1


目录

图像

上传图像

DSS Images   Other Images


相关文章

Beryllium and Alpha-element Abundances in a Large Sample of Metal-poor Stars
The light elements, Li, Be, and B, provide tracers for many aspects ofastronomy including stellar structure, Galactic evolution, andcosmology. We have made observations of Be in 117 metal-poor starsranging in metallicity from [Fe/H] = -0.5 to -3.5 with KeckI/HIRES. Our spectra are high resolution (~42,000) and high signal tonoise (the median is 106 per pixel). We have determined the stellarparameters spectroscopically from lines of Fe I, Fe II, Ti I, and Ti II.The abundances of Be and O were derived by spectrum synthesistechniques, while abundances of Fe, Ti, and Mg were found from manyspectral line measurements. There is a linear relationship between[Fe/H] and A(Be) with a slope of +0.88 ± 0.03 over three ordersof magnitude in [Fe/H]. We find that Be is enhanced relative to Fe;[Be/Fe] is +0.40 near [Fe/H] ~-3.3 and drops to 0.0 near [Fe/H]~-1.7. For the relationship between A(Be) and [O/H], we find agradual change in slope from 0.69 ± 0.13 for the Be-poor/O-poorstars to 1.13 ± 0.10 for the Be-rich/O-rich stars. Inasmuch asthe relationship between [Fe/H] and [O/H] seems robustly linear (slope =+0.75 ± 0.03), we conclude that the slope change in Be versus Ois due to the Be abundance. Much of the Be would have been formed in thevicinity of Type II supernova (SN II) in the early history of the Galaxyand by Galactic cosmic-ray (GCR) spallation in the later eras. AlthoughBe is a by-product of CNO, we have used Ti and Mg abundances asalpha-element surrogates for O in part because O abundances are rathersensitive to both stellar temperature and surface gravity. We find thatA(Be) tracks [Ti/H] very well with a slope of 1.00 ± 0.04. Italso tracks [Mg/H] very well with a slope of 0.88 ± 0.03. We havekinematic information on 114 stars in our sample and they divide equallyinto dissipative and accretive stars. Almost the full range of [Fe/H]and [O/H] is covered in each group. There are distinct differences inthe relationships of A(Be) and [Fe/H] and of A(Be) and [O/H] for thedissipative and the accretive stars. It is likely that the formation ofBe in the accretive stars was primarily in the vicinity of SN II, whilethe Be in the dissipative stars was primarily formed by GCR spallation.We find that Be is not as good a cosmochronometer as Fe. We have found aspread in A(Be) that is valid at the 4? level between [O/H] =-0.5 and -1.0, which corresponds to -0.9 and-1.6 in [Fe/H].

Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion
We present NLTE Li abundances for 88 stars in the metallicity range -3.5< [Fe/H] < -1.0. The effective temperatures are based on theinfrared flux method with improved E(B-V) values obtained mostly frominterstellar Na I D lines. The Li abundances were derived through MARCSmodels and high-quality UVES+VLT, HIRES+Keck and FIES+NOT spectra, andcomplemented with reliable equivalent widths from the literature. Theless-depleted stars with [Fe/H] < -2.5 and [Fe/H] > -2.5 fall intotwo well-defined plateaus of ALi = 2.18 (? = 0.04) andALi = 2.27 (? = 0.05), respectively. We show that thetwo plateaus are flat, unlike previous claims for a steep monotonicdecrease in Li abundances with decreasing metallicities. At allmetallicities we uncover a fine-structure in the Li abundances of Spiteplateau stars, which we trace to Li depletion that depends on bothmetallicity and mass. Models including atomic diffusion and turbulentmixing seem to reproduce the observed Li depletion assuming a primordialLi abundance ALi = 2.64, which agrees well with currentpredictions (ALi = 2.72) from standard Big Bangnucleosynthesis. Adopting the Kurucz overshooting model atmospheresincreases the Li abundance by +0.08 dex to ALi = 2.72, whichperfectly agrees with BBN+WMAP.Based in part on observations obtained at the W. M. Keck Observatory,the Nordic Optical Telescope on La Palma, and on data from theHIRES/Keck archive and the European Southern Observatory ESO/ST-ECFScience Archive Facility.Table 1 is only available in electronic form athttp://www.aanda.org

The PASTEL catalogue of stellar parameters
Aims: The PASTEL catalogue is an update of the [Fe/H] catalogue,published in 1997 and 2001. It is a bibliographical compilation ofstellar atmospheric parameters providing (T_eff, log g, [Fe/H])determinations obtained from the analysis of high resolution, highsignal-to-noise spectra, carried out with model atmospheres. PASTEL alsoprovides determinations of the one parameter T_eff based on variousmethods. It is aimed in the future to provide also homogenizedatmospheric parameters and elemental abundances, radial and rotationalvelocities. A web interface has been created to query the catalogue onelaborated criteria. PASTEL is also distributed through the CDS databaseand VizieR. Methods: To make it as complete as possible, the mainjournals have been surveyed, as well as the CDS database, to findrelevant publications. The catalogue is regularly updated with newdeterminations found in the literature. Results: As of Febuary2010, PASTEL includes 30151 determinations of either T_eff or (T_eff,log g, [Fe/H]) for 16 649 different stars corresponding to 865bibliographical references. Nearly 6000 stars have a determination ofthe three parameters (T_eff, log g, [Fe/H]) with a high qualityspectroscopic metallicity.The catalogue can be queried through a dedicated web interface at http://pastel.obs.u-bordeaux1.fr/.It is also available in electronic form at the Centre de DonnéesStellaires in Strasbourg (http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=B/pastel),at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A111

An absolutely calibrated Teff scale from the infrared flux method. Dwarfs and subgiants
Various effective temperature scales have been proposed over the years.Despite much work and the high internal precision usually achieved,systematic differences of order 100 K (or more) among various scales arestill present. We present an investigation based on the infrared fluxmethod aimed at assessing the source of such discrepancies and pin downtheir origin. We break the impasse among different scales by using alarge set of solar twins, stars which are spectroscopically andphotometrically identical to the Sun, to set the absolute zero point ofthe effective temperature scale to within few degrees. Our newlycalibrated, accurate and precise temperature scale applies to dwarfs andsubgiants, from super-solar metallicities to the most metal-poor starscurrently known. At solar metallicities our results validatespectroscopic effective temperature scales, whereas for [Fe/H]? -2.5our temperatures are roughly 100 K hotter than those determined frommodel fits to the Balmer lines and 200 K hotter than those obtained fromthe excitation equilibrium of Fe lines. Empirical bolometric correctionsand useful relations linking photometric indices to effectivetemperatures and angular diameters have been derived. Our results takefull advantage of the high accuracy reached in absolute calibration inrecent years and are further validated by interferometric angulardiameters and space based spectrophotometry over a wide range ofeffective temperatures and metallicities.Table 8 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/512/A54

6Li/7Li estimates for metal-poor stars
Context: The presence of the lithium-6 isotope in some metal-poor starsis a matter of surprise because of the high values observed.Non-standard models of Big Bang nucleosynthesis and pre-Galactic cosmicray fusion and spallation have been proposed to explain these values.However, the observations of this light isotope are challenging whichmay make some detections disputable. Aims: The goal was todetermine ^6Li/^7Li for a sample of metal-poor stars; three of them havebeen previously studied and the remaining two are new for this type ofstudy. The purpose was to increase, if possible, the number of lithium-6detections and to confirm previously published results. Methods:Spectra of the resonance doublet line of neutral lithium Li I 670.78 nmwere taken with the high dispersion spectrograph at the Subaru 8.2m-telescope for a sample of five metal-poor stars({-3.12≤[Fe/H]≤-2.19}). The contribution of lithium-6 to the totalobserved line profile was estimated from the 1D-LTE analysis of the lineasymmetry. Results: Observed asymmetries could be reproducedassuming isotopic abundance ratios ^6Li/^7Li of the order of: 0.004 forBD +26° 3578, 0.010 for BD +02°3375 and G 64-37, 0.025 for BD+20° 3603 and 0.047 for BD -04°3208. We found that these results were very sensitive toseveral of the assumptions made in the analysis, in particular, thetreatment of the residual structure in the analysed spectra. Our finalestimates for the errors are respectively Δ^6Li/^7Li = ±0.028, 0.029, 0.039, 0.025 and 0.039. Conclusions: The ^6Li/^7Liratios for the sample are comparable to or even lower than these errorvalues, so that detections of lithium-6 can not safely be claimeddespite of the high resolving power (R ˜ 95 000) and S/N(400-600).

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Searching for the metal-weak thick disc in the solar neighbourhood
An abundance analysis is presented of 60 metal-poor stars drawn fromcatalogues of nearby stars provided by Arifyanto et al. and Schuster etal. In an attempt to isolate a sample of metal-weak thick disc stars, weapplied the kinematic criteria Vrot >=100kms-1,|ULSR| <= 140kms-1 (LSR -local standard of rest) and |WLSR| <= 100kms-1.14 stars satisfying these criteria and having [Fe/H] <= -1.0 areincluded in the sample of 60 stars. Eight of the 14 have [Fe/H] >=-1.3 and may be simply thick disc stars of slightly lower than average[Fe/H]. The other six have [Fe/H] from -1.3 to -2.3 and are eithermetal-weak thick disc stars or halo stars with kinematics mimickingthose of the thick disc. The sample of 60 stars is completed by eightthick disc stars, 20 stars of a hybrid nature (halo or thick disc stars)and 18 stars with kinematics distinctive of the halo.

Speckle interferometry of metal-poor stars in the solar neighborhood. II
The results of speckle interferometric observations of 115 metal-poorstars ([m/H] < ‑1) within 250 pc from the Sun and with propermotions µ ≳ 0.2″/yr, made with the 6-m telescope of theSpecial Astrophysical Observatory of the Russian Academy of Sciences,are reported. Close companions with separations ranging from0.034″ to 1″ were observed for 12 objects—G76-21,G59-1, G63-46, G135-16, G168-42, G141-47, G142-44, G190-10, G28-43,G217-8, G130-7, and G89-14—eight of them are astrometricallyresolved for the first time. The newly resolved systems include onetriple star—G190-10. If combined with spectroscopic and visualdata, our results imply a single:binary:triple:quadruple star ratio of147:64:9:1 for a sample of 221 primary components of halo and thick-diskstars.

First stars VII - Lithium in extremely metal poor dwarfs
Context: .The primordial lithium abundance is a key prediction of modelsof big bang nucleosynthesis, and its abundance in metal-poor dwarfs (theSpite plateau) is an important, independent observational constraint onsuch models. Aims: .This study aims to determine the level andconstancy of the Spite plateau as definitively as possible fromhomogeneous high-quality VLT-UVES spectra of 19 of the most metal-poordwarf stars known. Methods: .Our high-resolution (R˜ 43 000),high S/N spectra are analysed with OSMARCS 1D LTE model atmospheres andturbospectrum synthetic spectra to determine effective temperatures,surface gravities, and metallicities, as well as Li abundances for ourstars. Results: .Eliminating a cool subgiant and a spectroscopicbinary, we find 8 stars to have -3.5 < [Fe/H] < -3.0 and 9 starswith -3.0 < [Fe/H] < -2.5. Our best value for the mean level ofthe plateau is A(Li) =2.10± 0.09. The scatter around the mean isentirely explained by our estimate of the observational error and doesnot allow for any intrinsic scatter in the Li abundances. In addition,we conclude that a systematic error of the order of 200 K in any of thecurrent temperature scales remains possible. The iron excitationequilibria in our stars support our adopted temperature scale, which isbased on a fit to wings of the Hα line, and disfavour hotterscales, which would lead to a higher Li abundance, but fail to achieveexcitation equilibrium for iron. Conclusions: .We confirm thepreviously noted discrepancy between the Li abundance measured inextremely metal-poor turnoff stars and the primordial Li abundancepredicted by standard Big-Bang nucleosynthesis models adopting thebaryonic density inferred from WMAP. We discuss recent work explainingthe discrepancy in terms of diffusion and find that uncertaintemperature scales remain a major question.Based on observations made with the ESO Very Large Telescope at ParanalObservatory, Chile (Large Programme "First Stars", ID 165.N-0276(A);P.I. R. Cayrel). Tables 4-8 and Appendix A are only available inelectronic form at http://www.aanda.org

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Lithium Isotopic Abundances in Metal-poor Halo Stars
Very high quality spectra of 24 metal-poor halo dwarfs and subgiantshave been acquired with ESO's VLT/UVES for the purpose of determining Liisotopic abundances. The derived one-dimensional, non-LTE 7Li abundances from the Li I 670.8 nm line reveal a pronounceddependence on metallicity but with negligible scatter around this trend.Very good agreement is found between the abundances from the Li I 670.8nm line and the Li I 610.4 nm line. The estimated primordial 7Li abundance is7Li/H=(1.1-1.5)×10-10, which is a factor of3-4 lower than predicted from standard big bang nucleosynthesis with thebaryon density inferred from the cosmic microwave background.Interestingly, 6Li is detected in 9 of our 24 stars at the>=2 σ significance level. Our observations suggest theexistence of a 6Li plateau at the level oflogε6Li~0.8 however, taking into accountpredictions for 6Li destruction during the pre-main-sequenceevolution tilts the plateau such that the 6Li abundancesapparently increase with metallicity. Our most noteworthy result is thedetection of 6Li in the very metal-poor star LP 815-43. Sucha high 6Li abundance during these early Galactic epochs isvery difficult to achieve by Galactic cosmic-ray spallation andα-fusion reactions. It is concluded that both Li isotopes have apre-Galactic origin. Possible 6Li production channels includeprotogalactic shocks and late-decaying or annihilating supersymmetricparticles during the era of big bang nucleosynthesis. The presence of6Li limits the possible degree of stellar 7Lidepletion and thus sharpens the discrepancy with standard big bangnucleosynthesis.Based on observations collected at the European Southern Observatory,Paranal, Chile (observing programs 65.L-0131, 68.D-0091, and273.D-5043).

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Chemical abundances of very metal-poor stars
High-resolution and high signal-to-noise ratio spectra of 32 verymetal-poor stars were obtained with the Coudé echellespectrograph mounted on the 2.16-m telescope at the NationalAstronomical Observatories (Xinglong, China). Equivalent widths of FeI,FeII, OI, NaI, MgI, AlI, SiI, SiII, KI, CaI, ScII, TiI, VI, CrI, MnI,NiI, CuI and BaII lines were measured. Stellar effective temperatureswere determined by colour indices. Stellar surface gravities werecalculated from Hipparcos parallaxes and stellar evolutionary tracks.Photospheric abundances of 16 elements were derived by localthermodynamical equilibrium analysis. Stellar space motions (U, V, W)and Galactic orbital parameters were calculated. Based on kinematics,sample stars were separated into dissipative collapse and accretioncomponents of halo population. The global kinematics of the twocomponents were analysed. Element abundances were discussed as functionsof metallicities. The results of oxygen and α-elements abundanceconfirmed the previous works. The [K/Fe] shows a gradual systematicincrease toward a lower metallicity, such as in the case ofα-elements. The [Ba/Fe] trend suggests that the s-processdominated Ba production at least for the metal-poor stars with[Fe/H]> -2.0.

The lithium content of the Galactic Halo stars
Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.

Implications of WMAP Observations on Li Abundance and Stellar Evolution Models
The Wilkinson Microwave Anisotropy Probe (WMAP) determination of thebaryon-to-photon ratio implies, through big bang nucleosynthesis, acosmological Li abundance larger, by a factor of 2-3, than the Liabundance plateau observed in the oldest Population II stars. It is,however, inescapable that there be a reduction by a factor of at least1.6-2.0 of the surface Li abundance during the evolution of PopulationII field stars with [Fe/H]<=-1.5. That the observed Li should belower than cosmologically produced Li is expected from stellar evolutionmodels. Since at turnoff most of the Li abundance reduction is caused bygravitational settling, the presence of 6Li insome turnoff stars is also understood. Given that the WMAP implicationsfor Li cosmological abundance and the Li Spite plateau can be naturallyexplained by gravitational settling in the presence of weak turbulence,there appears little need for exotic physics as suggested by someauthors. Instead, there is a need for a better understanding ofturbulent transport in the radiative zones of stars. This requiressimulations from first principles. Rather strict upper limits toturbulent transport are determined for the Sun and Population II stars.

Reappraising the Spite Lithium Plateau: Extremely Thin and Marginally Consistent with WMAP Data
The lithium abundance in 62 halo dwarfs is determined from accurateequivalent widths reported in the literature and an improved infraredflux method temperature scale. The Li abundance of 41 plateau stars(those with Teff>6000 K) is found to be independent oftemperature and metallicity, with a star-to-star scatter of only 0.06dex over a broad range of temperatures (6000K

Unsolved problems in observational astronomy. I. Focus on stellar spectroscopy
We present the highlights of current observational programs in stellaroptical spectroscopy carried out with 8-10 m class telescopes as well aswith smaller telescopes. Topics discussed include: 1. light elementsabundances and their cosmological implications; 2. search for PopulationIII stars and spectroscopy of extremely metal deficient stars; 3.abundances of different stellar populations in the Galaxy; 4.spectroscopy of resolved stars in Local Group galaxies; 5. Li and Beabundances and internal mixing in stars; 6. spectroscopy of very-lowmass stars and brown dwarfs; 7. radial velocity search of extrasolarplanets; 8. stellar oscillations and asteroseismology; 9. stellarmagnetic activity and Doppler imaging of stellar surface features. Wealso highlight the role that dedicated 1-2 m automatic telescopes withspectroscopic capabilities can play in several fields of stellar opticalspectroscopy.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Lithium Abundance of Metal-poor Stars
High-resolution, high signal-to-noise ratio spectra have been obtainedfor 32 metal-poor stars. The equivalent widths of Li λ6708Åwere measured and the lithium abundances were derived. The averagelithium abundance of 21 stars on the lithium plateau is 2.33±0.02dex. The Lithium plateau exhibits a marginal trend along metallicity,dA(Li)/d[Fe/H] = 0.12±0.06, and no clear trend with the effectivetemperature. The trend indicates that the abundance of lithium plateaumay not be primordial and that a part of the lithium was produced inGalactic Chemical Evolution (GCE).

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries
We report 25,563 radial velocity measurements for 1359 single-linedstars in the Carney-Latham sample of 1464 stars selected for high propermotion. For 171 of these, we present spectroscopic orbital solutions. Wefind no obvious difference between the binary characteristics in thehalo and the disk populations. The observed frequency is the same, andthe period distributions are consistent with the hypothesis that the twosets of binaries were drawn from the same parent population. Thissuggests that metallicity in general, and radiative opacities inparticular, have little influence over the fragmentation process thatleads to short-period binaries. All the binaries with periods shorterthan 10 days have nearly circular orbits, while the binaries withperiods longer than 20 days exhibit a wide range of eccentricities and amedian value of 0.37. For the metal-poor high-velocity halo binaries inour sample, the transition from circular to eccentric orbits appears tooccur at about 20 days, supporting the conclusion that tidalcircularization on the main sequence is important for the oldestbinaries in the Galaxy. Some of the results presented here usedobservations made with the Multiple Mirror Telescope, a joint facilityof the Smithsonian Institution and the University of Arizona.

O/Fe in metal-poor main sequence and subgiant stars
A study of the O/Fe ratio in metal-poor main sequence and subgiant starsis presented using the \ion{Oi},6300 Å line, the O I 7774 Åtriplet, and a selection of weak Fe Ii lines observed on high-resolutionspectra acquired with the VLT UVES spectrograph. The \ion{Oi line isdetected in the spectra of 18 stars with -2.4 < [Fe/H] < -0.5, andthe triplet is observed for 15 stars with Fe/H ranging from -1.0 to-2.7. The abundance analysis was made first using standard modelatmospheres taking into account non-LTE effects on the triplet: the\ion{Oi} line and the triplet give consistent results with [O/Fe]increasing quasi-linearly with decreasing [Fe/H] reaching [O/Fe] =~ +0.7at [Fe/H] = -2.5. This trend is in reasonable agreement with otherresults for [O/Fe] in metal-poor dwarfs obtained using standardatmospheres and both ultraviolet and infrared OH lines. There is alsobroad agreement with published results for [O/Fe] for giants obtainedusing standard model atmospheres and the \ion{Oi} line, and the OHinfrared lines, but the O I lines give higher [O/Fe] values which may,however, fall into place when non-LTE effects are considered. Whenhydrodynamical model atmospheres representing stellar granulation indwarf and subgiant stars replace standard models, the [O/Fe] from the\ion{Oi} and Fe Ii lines is decreased by an amount which increases withdecreasing [Fe/H]. These 3D effects on [O/Fe] is compounded by theopposite behaviour of the \ion{Oi} (continuous opacity effect) and Fe Iilines (excitation effect). The [O/Fe] vs. [Fe/H] relation remainsquasi-linear extending to [O/Fe] =~ +0.5 at [Fe/H] = -2.5, but with atendency of a plateau with [O/Fe] =~ +0.3 for -2.0 < [Fe/H] <-1.0, and a hint of cosmic scatter in [O/Fe] at [Fe/H] =~ -1.0. Use ofthe hydrodynamical models disturbs the broad agreement between theoxygen abundances from the \ion{Oi} , O I, and OH lines, but 3D non-LTEeffects may serve to erase these differences. The [O/Fe] values from the\ion{Oi} line and the hydrodynamical model atmospheres for dwarfs andsubgiant stars are lower than the values for giants using standard modelatmospheres and the \ion{Oi}, and O I lines. Based on observationscollected at the European Southern Observatory, Chile (ESO Nos.65.L-0131, 65.L-0507, and 67.D-0439).

Catalogue of [Fe/H] determinations for FGK stars: 2001 edition
The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.

Oxygen in the Very Early Galaxy
Oxygen abundances in a sample of ultra-metal-poor subdwarfs have beenderived from measurements of the oxygen triplet at 7771-5 Å and OHlines in the near-UV performed in high-resolution and highsignal-to-noise ratio spectra obtained with WHT/UES, Keck I/HIRES, andVLT/UVES. Our Fe abundances were derived in LTE and then corrected fornon-LTE (NLTE) effects. The new oxygen abundances confirm previousfindings for a progressive linear rise in the oxygen-to-iron ratio witha slope -0.33+/-0.02 from solar metallicity to [Fe/H]~-3. A slightlyhigher slope would be obtained if the Fe NLTE corrections were notconsidered. Below [Fe/H]=-2.5 our stars show [O/Fe] ratios as high as~1.17 (G64-12), which can be interpreted as evidence for oxygenoverproduction in the very early epoch of the formation of the halo,possibly associated with supernova events with very massive progenitorstars. We show that the arguments against this linear trend given byFulbright & Kraft in 1999, based on the LTE Fe analysis of twometal-poor stars, cannot be sustained when an NLTE analysis isperformed. We discuss how the Fulbright & Kraft LTE ionizationbalance of Fe lines underestimates the gravity of the very metal-poorstar BD +23°3130 ([Fe/H]=-2.43) and how this leads to anunderestimation of the oxygen abundance derived from the forbidden line.Gravities from Hipparcos appear to be in good agreement with thosedetermined in NLTE, giving higher values than previously assumed, whichreduces the discrepancies between the oxygen abundances determined fromOH, triplet, and forbidden lines. Using one-dimensional models, ouranalysis of three oxygen indicators available for BD +23°3130 givesan average [O/Fe] ratio of 0.78+0.15-0.18. Thehigh oxygen abundances at very low metallicities do not pose a problemto theoretical modeling since there is a range of parameters in thecalculations of nucleosynthesis yields from massive stars at lowmetallicities that can accommodate our results. Based on data collectedat the Keck I, VLT, and William Herschel telescopes.

Revised Magnesium Abundances in Galactic Halo and Disk Stars
A differential analysis of the magnesium abundances in 61 F-K dwarfs andsubgiants with metallicities -2.6<[Fe/H]<+0.2 is performed basedon published observational data. Fundamental parameters for 36 stars aredetermined: T eff from V-K and V-R; logg from HIPPARCOS parallaxes, and[Fe/H] and ξt from Fe II lines. The computations allow for non-LTEeffects in the formation of the Mg I lines. For most of the stars, thestandard errors in the Mg abundances do not exceed 0.07 dex. Themetallicity dependence of [Mg/Fe] is analyzed. Magnesium shows aconstant overabundance relative to Fe of 0.46±0.06 dex formetallicities -2.6<[Fe/H]<-0.7 Mg. The Mg overabundance decreasesabruptly to ˜+0.27 dex at [Fe/H]⋍-0.7. At highermetallicities, the Mg abundance smoothly decreases to the solar value at[Fe/H]=0.0. Halo stars with metallicities [Fe/H]<-1.0 exhibit lowerMg overabundances ( ) compared to the [Mg/Fe] values for other starswith similar [Fe/H].

An Analysis of the K I λ7698 Line Profile in the Halo Turnoff Star HD 84937 and Its Implications for Lithium Isotopic Studies
The line profile of the resonance line of K I at 7698 Å has beenanalyzed in the halo turnoff star HD 84937, using a high-resolution(λ/Δλ=110,000), high signal-to-noise ratio (S/N=550)spectrum. Three different groups have reported detecting 6Liin this star, based on a red asymmetry in the Li I λ6707 lineprofile (6Li displays an isotopic shift of about 0.15 Åto the red, relative to 7Li, in this line). It is possible,however, that convection could introduce this red asymmetry by massmotions of 7Li in the star's atmosphere. At the metallicityof HD 84937, the K I resonance line at 7698 Å is expected to havea similar line strength to the Li I λ6707 feature, and both theselines are resonance transitions. In addition, both potassium and lithiumhave similar first ionization potentials. The result of thesesimilarities is that the Li I and K I lines are formed at nearlyidentical regions in the atmosphere of HD 84937. This study presents aline profile analysis of the K I line, which has negligible isotopicsplitting and is effectively a single-component line, in HD 84937. Anypossible convective motions of sufficient magnitude to produce aspurious detection of 6Li should also produce detectableasymmetries in the K I line. No such asymmetries are found here,strengthening the case that the previously reported detections of6Li in HD 84937 are real.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

The lithium isotope ratio in the metal-poor halo star G271-162 from VLT/UVES observations
A high resolution (lambda /Delta lambda =~ 110 000), very high S/N(>~ 600) spectrum of the metal-poor turnoff star G271-162 has been obtained in connection with the commissioningof UVES at VLT/Kueyen. Using both 1D hydrostatic and 3D hydrodynamicalmodel atmospheres, the lithium isotope ratio has been estimated from theLi I,670.8 nm line by means of spectral synthesis. The necessary stellarline broadening (1D: macroturbulence + rotation, 3D: rotation) has beendetermined from unblended K I, Ca I and Fe I lines. The 3D line profilesagree very well with the observed profiles, including the characteristicline asymmetries. Both the 1D and 3D analyses reveal a possibledetection of \element[][6]{Li} in G 271-162, element[][6]{Li}/element [][7]{Li} = 0.02+/-0.01 (1sigma ). It is discussed ifthe smaller amount of \element[][6]{Li} in G 271-162than in the similar halo star HD 84937 could be dueto differences in stellar mass and/or metallicity or whether it mayreflect an intrinsic scatter of \element[][6]{Li}/\element[][7]{Li} inthe ISM at a given metallicity. Based on public data released from theUVES commissioning at the VLT/Kueyen telescope, ESO, Paranal, Chile

Stars in the Galactic Halo
Not Available

提交文章


相关链接

  • - 没有找到链接 -
提交链接


下列团体成员


观测天体数据

星座:鯨魚座
右阿森松:01h50m32.65s
赤纬:-09°21'02.8"
视星:10.363
右阿森松适当运动:256.1
赤纬适当运动:94.3
B-T magnitude:10.894
V-T magnitude:10.407

目录:
适当名称   (Edit)
TYCHO-2 2000TYC 5278-544-1
USNO-A2.0USNO-A2 0750-00432938
HIPHIP 8572

→ 要求更多目录从vizier