Главная     Введение     Выжить во Вселенной    
Inhabited Sky
    News@Sky     Астрофотография     Коллекция     Форум     Blog New!     Помощь     Пресса     Войти  

HD 161848


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

WIYN Open Cluster Study. XIX. Main-Sequence-Fitting Distances to Open Clusters Using V-K Color-Magnitude Diagrams
We have combined existing optical magnitudes for stars in seven openclusters and 54 field stars with the corresponding JHKsphotometry from the Two Micron All Sky Survey (2MASS). Combining opticalwith near-IR photometry broadens the color baseline, minimizing theinfluence of photometric errors and allowing better discriminationbetween cluster stars and contaminating foreground and backgroundpopulations. The open clusters in this study include NGC 2516, M35, M34,NGC 3532, M37, M67, and NGC 188. The field stars we are using possesshigh-quality Hipparcos parallaxes and well-determined metal abundances,allowing us to empirically determine the dependence of V-K color onmetal abundance in the range -0.45<=[Fe/H]<=+0.35.Using this relation along with the parallaxes of the field stars, we areable to construct an unevolved main sequence in the [MV,(V-K)0] diagram for a specific abundance. These diagrams arethen used to fit to the cluster main sequences in the (V, V-K)color-magnitude diagram in order to estimate a distance for each opencluster. We find that the resultant distances are within the range ofdistances found in the literature via the main-sequence-fittingtechnique. It is hoped that this will spur an expansion of the current(limited) database of star clusters with high-quality V-K photometrydown to the unevolved main sequence.This publication makes use of data products from the Two Micron All SkySurvey, which is a joint project of the University of Massachusetts andthe Infrared Processing and Analysis Center/California Institute ofTechnology, funded by the National Aeronautics and Space Administrationand the National Science Foundation.

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Mapping the Galactic Halo. VI. Spectroscopic Measures of Luminosity and Metallicity
We present our calibration of spectroscopic measures of luminosity andmetallicity for halo giant candidates and give metallicities anddistances for our first sample of spectroscopically confirmed giants.These giants have distances ranging from 15 to 83 kpc. As surveys reachfarther into the Galaxy's halo with K giant samples, identification ofgiants becomes more difficult. This is because the numbers of foregroundhalo K dwarfs rise for V magnitudes of 19-20, typical for halo giants at~100 kpc. Our photometric survey uses the strength of the Mg b/H featurenear 5170 Å to weed K dwarfs out of the disk and thick disk, butwe need spectroscopic measures of the strength of the Ca II K, Ca Iλ4227, and Mg b/H features to distinguish between the verymetal-poor dwarfs and halo giants. Using a full error analysis of ourspectroscopic measures, we show why a signal-to-noise ratio of ~15pixel-1 at Ca I λ4227 and ~10 at Ca II K is needed forreliable luminosity discrimination. We use the Ca II K and Mg b featuresto measure metallicity in our halo giants, with typical errors (randomplus systematic) of 0.3 dex for [Fe/H] values from -0.8 to -3.0.

The open cluster distance scale. A new empirical approach
We present new BV(RI)C photometry for a sample of 54 local Gand K stars with accurate Hipparcos parallaxes in the metallicity range-0.4 <= [Fe/H] <= +0.3. We use this sample to develop a completelymodel-independent main sequence (MS) fitting method which we apply to 4open clusters - the Hyades, Praesepe, the Pleiades and NGC 2516 - whichall have direct Hipparcos parallax distance determinations. Comparisonof our MS-fitting results with distances derived from Hipparcosparallaxes enables us to explore whether the discrepancy between theHipparcos distance scale and other MS-fitting methods found for someclusters is a consequence of model assumptions. We find good agreementbetween our results and the Hipparcos ones for the Hyades and Praesepe.For the Pleiades and NGC 2516, when adopting the solar abundancedetermined from spectroscopy, we find significant disagreement at alevel similar to that found by other MS-fitting studies. However, thecolour-colour relationship for both these clusters suggests that theirmetallicity is significantly subsolar. Since the MS-fitting methodrelies on matching the cluster colours to a template MS, we argue that,when applying this method, the appropriate metallicity to adopt is thephotometric subsolar one, not the solar abundance indicated byspectroscopy. Adopting photometric metallicities for all 4 clusters, wefind complete agreement with the Hipparcos results and hence we concludethat the mismatch between the spectroscopic and photometric abundancesfor the Pleiades and NGC 2516 is responsible for the discrepancies indistance estimates found by previous studies. The origin of thismismatch in abundance scales remains an unsolved problem and somepossible causes are discussed.

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog
We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Mapping the Galactic Halo. I. The ``Spaghetti'' Survey
We describe a major survey of the Milky Way halo designed to test forkinematic substructure caused by destruction of accreted satellites. Weuse the Washington photometric system to identify halo stars efficientlyfor spectroscopic follow-up. Tracers include halo giants (detectable outto more than 100 kpc), blue horizontal-branch (BHB) stars, halo starsnear the main-sequence turnoff, and the ``blue metal-poor stars'' ofPreston, Beers, & Shectman. We demonstrate the success of our surveyby showing spectra of stars we have identified in all these categories,including giants as distant as 75 kpc. We discuss the problem ofidentifying the most distant halo giants. In particular, extremelymetal-poor halo K dwarfs are present in approximately equal numbers tothe distant giants for V>18, and we show that our method willdistinguish reliably between these two groups of metal-poor stars. Weplan to survey 100 deg2 at high Galactic latitude and expectto increase the numbers of known halo giants, BHB stars, and turnoffstars by more than an order of magnitude. In addition to the strong testthat this large sample will provide for the question, Was the Milky Wayhalo accreted from satellite galaxies? we will improve the accuracy ofmass measurements of the Milky Way beyond 50 kpc via the kinematics ofthe many distant giants and BHB stars we find. We show that one of ourfirst data sets constrains the halo density law over Galactocentricradii of 5-20 kpc and z-heights of 2-15 kpc. The data support aflattened power-law halo with b/a of 0.6 and exponent -3.0. More complexmodels with a varying axial ratio may be needed with a larger data set.

Absolute proper motions of open clusters. I. Observational data
Mean proper motions and parallaxes of 205 open clusters were determinedfrom their member stars found in the Hipparcos Catalogue. 360 clusterswere searched for possible members, excluding nearby clusters withdistances D < 200 pc. Members were selected using ground basedinformation (photometry, radial velocity, proper motion, distance fromthe cluster centre) and information provided by Hipparcos (propermotion, parallax). Altogether 630 certain and 100 possible members werefound. A comparison of the Hipparcos parallaxes with photometricdistances of open clusters shows good agreement. The Hipparcos dataconfirm or reject the membership of several Cepheids in the studiedclusters. Tables 1 and 2 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Photometric Measurements of the Fields of More than 700 Nearby Stars
In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.

Metallicity effects on the chromospheric activity-age relation for late-type dwarfs
We show that there is a relationship between the age excess, defined asthe difference between the stellar isochrone and chromospheric ages, andthe metallicity as measured by the index [Fe/H] for late-type dwarfs.The chromospheric age tends to be lower than the isochrone age formetal-poor stars, and the opposite occurs for metal-rich objects. Wesuggest that this could be an effect of neglecting the metallicitydependence of the calibrated chromospheric emission-age relation. Wepropose a correction to account for this dependence. We also investigatethe metallicity distributions of these stars, and show that there aredistinct trends according to the chromospheric activity level. Inactivestars have a metallicity distribution which resembles the metallicitydistribution of solar neighbourhood stars, while active stars appear tobe concentrated in an activity strip on the logR'_HKx[Fe/H] diagram. Weprovide some explanations for these trends, and show that thechromospheric emission-age relation probably has different slopes on thetwo sides of the Vaughan-Preston gap.

Kinematics and Metallicity of Stars in the Solar Region
Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.

CCD Stromgren Photometry of Young Reddened Clusters
The capabilities of CCD uvby photometry for the study of reddened youngclusters are investigated. Observations of four fields in the directionof the clusters Basel 1, Berkeley 86, NGC 6704, and NGC 6756, with atotal of 1665 stars measured in at least the y and b bands, produce newestimates for the clusters parameters. The results are compared to thosefrom previously published studies in different photometric systemsshowing good agreement in the values of color excess and distancemodulus, with the exception of NGC 6756, for which an essentially largerdistance is found. Furthermore, the ages estimated for this cluster,Basel 1, and NGC 6704 are found to be higher than previously assumed, inparticular for the last one. The presence of red giants as clustermembers is suggested in Basel 1, NGC 6704, and NGC 6756.

The catalogue of nearby stars metallicities.
Not Available

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

CA II H and K measurements made at Mount Wilson Observatory, 1966-1983
Summaries are presented of the photoelectric measurements of stellar CaII H and K line intensity made at Mount Wilson Observatory during theyears 1966-1983. These results are derived from 65,263 individualobservations of 1296 stars. For each star, for each observing season,the maximum, minimum, mean, and variation of the instrumental H and Kindex 'S' are given, as well as a measurement of the accuracy ofobservation. A total of 3110 seasonal summaries are reported. Factorswhich affect the ability to detect stellar activity variations andaccurately measure their amplitudes, such as the accuracy of the H and Kmeasurements and scattered light contamination, are discussed. Relationsare given which facilitate intercomparison of 'S' values with residualintensities derived from ordinary spectrophotometry, and for convertingmeasurements to absolute fluxes.

Chromospheric activity in evolved stars - The rotation-activity connection and the binary-single dichotomy
A tabulation of measured values of the Ca II H and K (S) index aretransformed to the original Mount Wilson definition of the index. Thetabulation includes main-sequence, evolved, single, and tidally coupled(RS CVn) binary stars. The (S) indices are analyzed against Wilson's(1976) I(HK) intensity estimates, showing that Wilson's estimates areonly a two-state indicator. Ca II H and K fluxes are computed andcalibrated with published values of rotation periods. It is found thatthe single and binary stars are consistent with a single relationshipbetween rotation and Ca II excess emission flux.

Four-color UVBY and H-beta photometry of high-velocity and metal-poor stars. I - The catalogue of observations
A catalog of four-color uvby and H-beta photometry for 711 high-velocityand metal-poor stars is given. The selection of the stars and theobserving and reduction techniques used to obtain these data arediscussed. The photometry has been transformed closely onto the standarduvby-beta system. The errors of the data have been estimated using bothinternal and external comparisons. The data are uniform over the sky;that is, there are no significant north-south differences. For the largemajority of stars the mean errors of V, m1, c1, and beta are less than +or - 0.008 mag, and the error of b-y is less than + or - 0.005 mag.Values of V, b-y and beta and rough photometric classifications aregiven for 63 red and/or evolved stars that fall outside the range of thephotometric transformations.

ICCD speckle observations of binary stars. III - A survey for duplicity among high-velocity stars
An analysis of speckle interferometry data for 182 stars has resulted inthe detection of 10 binaries, four of which are newly resolved systems.After correcting for selection effects, the data are found to becompatible with a total frequency for high-velocity long-period doubleswhich is as large as that for low-velocity stars. Based on spectroscopicparallaxes and visual magnitudes, these binaries are found to be within100 pc of the sun, with eight having linear separations of less than 20AU. Four of the binaries are determined to have periods of less than 20yr.

Luminosities, abundances, and motions of stars brighter than visual magnitude 15.1 and annual proper motions larger than one-half arcsecond
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1987AJ.....93..393E&db_key=AST

Catalog of proper-motion stars. III - Stars brighter than visual magnitude 15.1, south of declination +30 deg, and with annual proper motion between 0.5 and 0.7 arcsec
A catalog of (VRI) photometry for the some one thousand stars withannual proper motion between 0.5 and 0.7 arcsec, brighter than visualmagnitude 15.1, and south of declination +30 deg is presented. Theavailable proper-motion and radial-velocity data are also summarized.

New subdwarfs. VI - Kinematics of 1125 high-proper-motion stars and the collapse of the Galaxy
The UVW velocity components, planar eccentricities, and angular momentaof 878 high-proper-motion stars are determined using the radial-velocitydata of Fouts and Sandage (1986) and compared with chemical abundancesand photometric parallaxes from the UBV photometry of Sandage and Kowal(1986). The results are presented, along with published data on 247additional stars, in extensive tables and graphs and characterized indetail. Two approximately equal components are differentiated: alow-velocity component identified as part of the thick disk described byGilmore and Reid (1983) and a high-velocity halo component. The data arefound to support a model of Galactic collapse (with concomitant spinupand progressive chemical enrichment) which includes a rotating bulge(the thick disk) with kinematic and metallicity properties between thoseof the old thin disk and the halo.

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Змееносец
Прямое восхождение:17h47m42.09s
Склонение:+04°56'22.7"
Видимая звёздная величина:8.916
Расстояние:38.226 парсек
Собственное движение RA:-547
Собственное движение Dec:-214.1
B-T magnitude:9.899
V-T magnitude:8.998

Каталоги и обозначения:
Собственные имена   (Edit)
HD 1989HD 161848
TYCHO-2 2000TYC 424-1608-1
HIPHIP 87089

→ Запросить дополнительные каталоги и обозначения от VizieR