Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 130144 (EK Boötis)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Study of molecular layers in the atmosphere of the supergiant star μ Cep by interferometry in the K band
Infrared interferometry of supergiant and Mira stars has recently beenreinterpreted as revealing the presence of deep molecular layers.Empirical models for a photosphere surrounded by a simple molecularlayer or envelope have led to a consistent interpretation of previouslyinconsistent data. The stellar photospheres are found to be smaller thanpreviously understood, and the molecular layer is much higher and denserthan predicted by hydrostatic equilibrium. However, the analysis wasbased on spatial observations with medium-band optical filters, whichmixed the visibilities of different spatial structures. This paperreports spatial interferometry with narrow spectral bands, isolatingnear-continuum and strong molecular features, obtained for thesupergiant μ Cep. The measurements confirm strong variation ofapparent diameter across the K-band. A layer model shows that a stellarphotosphere of angular diameter 14.11±0.60 mas is surrounded by amolecular layer of diameter 18.56±0.26 mas, with an opticalthickness varying from nearly zero at 2.15 μm to >1 at 2.39 μm.Although μ Cep and α Ori have a similar spectral type,interferometry shows that they differ in their radiative properties.Comparison with previous broad-band measurements shows the importance ofnarrow spectral bands. The molecular layer or envelope appears to be acommon feature of cool supergiants.

Is Arcturus a well-understood K giant?. Test of model atmospheres and potential companion detection by near-infrared interferometry
We present near-IR interferometric measurements of the K1.5 giantArcturus (α Bootis), obtained at the IOTA interferometer with theFLUOR instrument, in four narrow filters with central wavelengthsranging from 2.03 μm to 2.39 μm. These observations were expectedto allow us to quantify the wavelength dependence of the diameter of atypical K giant. They are compared to predictions from bothplane-parallel and spherical model atmospheres. Unexpectedly, neithercan explain the observed visibilities. We show that these data suggestthe presence of a companion, in accordance with the Hipparcos data onthis star, and discuss this solution with respect to Arcturus' singlestar status.

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Unveiling Mira stars behind the molecules. Confirmation of the molecular layer model with narrow band near-infrared interferometry
We have observed Mira stars with the FLUOR beamcombiner on the IOTAinterferometer in narrow bands around 2.2 μm wavelength. We findsystematically larger diameters in bands contaminated by water vapor andCO. The visibility measurements can be interpreted with a modelcomprising a photosphere surrounded by a thin spherical molecular layer.The high quality of the fits we obtain demonstrates that this simplemodel accounts for most of the star's spatial structure. For each starand each period we were able to derive the radius and temperature of thestar and of the molecular layer as well as the optical depth of thelayer in absorption and continuum bands. The typical radius of themolecular layer is 2.2 R* with a temperature ranging between1500 and 2100 K. The photospheric temperatures we find are in agreementwith spectral types of Mira stars. Our photospheric diameters are foundsmaller than in previous studies by several tens of percent. We believeprevious diameters were biased by the use of unsuited geometrical modelsto explain visibilities. The conclusions of this work are various.First, we offer a consistent view of Mira stars over a wide range ofwavelengths. Second, the parameters of the molecular layer we find areconsistent with spectroscopic studies. Third, from our diametermeasurements we deduce that all Mira stars are fundamental modepulsators and that previous studies leading to the conclusion of thefirst-overtone mode were biased by too large diameter estimates.Based on observations collected at the IOTA interferometer, WhippleObservatory, Mount Hopkins, Arizona.Table 3 is only available in electronic form athttp://www.edpsciences.org

Interferometric observations of the supergiant stars α Orionis and α Herculis with FLUOR at IOTA
We report the observations in the K band of the red supergiant starα Orionis and of the bright giant star α Herculis with theFLUOR beamcombiner at the IOTA interferometer. The high quality of thedata allows us to estimate limb-darkening and derive precise diametersin the K band which combined with bolometric fluxes yield effectivetemperatures. In the case of Betelgeuse, data collected at high spatialfrequency although sparse are compatible with circular symmetry andthere is no clear evidence for departure from circular symmetry. We havecombined the K band data with interferometric measurements in the L bandand at 11.15 μm. The full set of data can be explained if a 2055 Klayer with optical depths τK=0.060±0.003,τL=0.026±0.002 and τ11.15 μm=2.33±0.23 is added 0.33 R* above the photosphereproviding a first consistent view of the star in this range ofwavelengths. This layer provides a consistent explanation for at leastthree otherwise puzzling observations: the wavelength variation ofapparent diameter, the dramatic difference in limb darkening between thetwo supergiant stars, and the previously noted reduced effectivetemperature of supergiants with respect to giants of the same spectraltype. Each of these may be simply understood as an artifact due to notaccounting for the presence of the upper layer in the data analysis.This consistent picture can be considered strong support for thepresence of a sphere of warm water vapor, proposed by \cite{tsuji2000}when interpreting the spectra of strong molecular lines.Based on observations collected at the IOTA interferometer, WhippleObservatory, Mount Hopkins, Arizona.

Really Cool Stars and the Star Formation History at the Galactic Center
We present λ/Δλ=550-1200 near-infrared H and Kspectra for a magnitude-limited sample of 79 asymptotic giant branch andcool supergiant stars in the central ~5 pc (diameter) of the Galaxy. Weuse a set of similar spectra obtained for solar neighborhood stars withknown Teff and Mbol that is in the same range asthe Galactic center (GC) sample to derive Teff andMbol for the GC sample. We then construct the H-R diagram forthe GC sample. Using an automated maximum likelihood routine, we derivea coarse star formation history of the GC. We find that (1) roughly 75%of the stars formed in the central few parsecs are older than 5 Gyr; (2)the star formation rate (SFR) is variable over time, with a roughly 4times higher SFR in the last 100 Myr compared to the average SFR; (3)our model can match dynamical limits on the total mass of stars formedonly by limiting the initial mass function to masses above 0.7Msolar (this could be a signature of mass segregation or ofthe bias toward massive star formation from the unique star formationconditions in the GC); (4) blue supergiants account for 12% of the totalsample observed, and the ratio of red to blue supergiants is roughly1.5; and (5) models with isochrones with [Fe/H]=0.0 over all ages fitthe stars in our H-R diagram better than models with lower [Fe/H] in theoldest age bins, consistent with the finding of Ramírez et al.that stars with ages between 10 Myr and 1 Gyr have solar [Fe/H].

Wing Near-Infrared, TiO-Band, and V-Band Photometry of Chromospherically Active Star λ Andromedae
As a pilot program, Wing near-IR, TiO-band, and V-band photometry isbeing conducted of the RS Canum Venaticorum type, chromosphericallyactive, G8 IV-III star λ Andromedae. The objective is toinvestigate a possible relationship between variation of the ~54 dayrotationally starspot modulated visual light curve and TiO absorptionstrength. The TiO (γ,0,0) absorption band strength at λ=719nm is very sensitive to temperature for cool stars and manifests itselfin cooler starspot regions (T<=4000 K). TiO photometry has anadvantage over conventional photometry in that it provides unambiguousmeasures of the fractional cool starspot coverage. In addition, as thestars rotate, the variation in the TiO index yields information aboutthe longitudinal distribution of the starspots. Importantly, combiningthe TiO photometry with the V-band and near-IR light curves allows thediscrimination of white-light faculae (=hot spot) and cool starspotcontributions. Initial results of this study indicate that the observedV-band and near-IR continua light variations found for λ Andprimarily arise from bright spot (plage) features rather than darkstarspots as is usually assumed. This is in contrast to current theoriesthat the visual light variation is solely due to dark spots. Modelsusing both bright and dark spot features have been developed and arebeing used to fit the light and TiO-index curves. The models account forcool/hot spot characteristics such as projected filling factor andtemperature. The long-term variation of V light and TiO index have beeninvestigated to search for any activity cycles.

High resolution spectroscopy over lambda lambda 8500-8750 Å for GAIA. IV. Extending the cool MK stars sample
A library of high resolution spectra of MK standard and reference stars,observed in support to the GAIA mission, is presented. The aim of thispaper is to integrate the MK mapping of Paper I of this series as wellas to consider stars over a wider range of metallicities. Radialvelocities are measured for all the target stars.The spectra are available in electronic form (ASCII format) at CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/406/995 and from the webpage http://ulisse.pd.astro.it/MoreMK/, where further bibliographicalinformation for the target stars is given.

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

New periodic variables from the Hipparcos epoch photometry
Two selection statistics are used to extract new candidate periodicvariables from the epoch photometry of the Hipparcos catalogue. Theprimary selection criterion is a signal-to-noise ratio. The dependenceof this statistic on the number of observations is calibrated usingabout 30000 randomly permuted Hipparcos data sets. A significance levelof 0.1 per cent is used to extract a first batch of candidate variables.The second criterion requires that the optimal frequency be unaffectedif the data are de-trended by low-order polynomials. We find 2675 newcandidate periodic variables, of which the majority (2082) are from theHipparcos`unsolved' variables. Potential problems with theinterpretation of the data (e.g. aliasing) are discussed.

CHARM: A Catalog of High Angular Resolution Measurements
The Catalog of High Angular Resolution Measurements (CHARM) includesmost of the measurements obtained by the techniques of lunaroccultations and long-baseline interferometry at visual and infraredwavelengths, which have appeared in the literature or have otherwisebeen made public until mid-2001. A total of 2432 measurements of 1625sources are included, along with extensive auxiliary information. Inparticular, visual and infrared photometry is included for almost allthe sources. This has been partly extracted from currently availablecatalogs, and partly obtained specifically for CHARM. The main aim is toprovide a compilation of sources which could be used as calibrators orfor science verification purposes by the new generation of largeground-based facilities such as the ESO Very Large Interferometer andthe Keck Interferometer. The Catalog is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/386/492, and from theauthors on CD-Rom.

New Hipparcos variables in the Bright Star Catalogue.
Not Available

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Sixth Catalogue of Fundamental Stars (FK6). Part III. Additional fundamental stars with direct solutions
The FK6 is a suitable combination of the results of the HIPPARCOSastrometry satellite with ground-based data, measured over a longinterval of time and summarized mainly in the FK5. Part III of the FK6(abbreviated FK6(III)) contains additional fundamental stars with directsolutions. Such direct solutions are appropriate for single stars or forobjects which can be treated like single stars. Part III of the FK6contains in total 3272 stars. Their ground-based data stem from thebright extension of the FK5 (735 stars), from the catalogue of remainingSup stars (RSup, 732 stars), and from the faint extension of the FK5(1805 stars). From the 3272 stars in Part III, we have selected 1928objects as "astrometrically excellent stars", since their instantaneousproper motions and their mean (time-averaged) ones do not differsignificantly. Hence most of the astrometrically excellent stars arewell-behaving "single-star candidates" with good astrometric data. Thesestars are most suited for high-precision astrometry. On the other hand,354 of the stars in Part III are Δμ binaries in the sense ofWielen et al. (1999). Many of them are newly discovered probablebinaries with no other hitherto known indication of binarity. The FK6gives, besides the classical "single-star mode" solutions (SI mode),other solutions which take into account the fact that hidden astrometricbinaries among "apparently single-stars" introduce sizable "cosmicerrors" into the quasi-instantaneously measured HIPPARCOS proper motionsand positions. The FK6 gives, in addition to the SI mode, the "long-termprediction (LTP) mode" and the "short-term prediction (STP) mode". TheseLTP and STP modes are on average the most precise solutions forapparently single stars, depending on the epoch difference with respectto the HIPPARCOS epoch of about 1991. The typical mean error of anFK6(III) proper motion in the single-star mode is 0.59 mas/year. This isa factor of 1.34 better than the typical HIPPARCOS errors for thesestars of 0.79 mas/year. In the long-term prediction mode, in whichcosmic errors are taken into account, the FK6(III) proper motions have atypical mean error of 0.93 mas/year, which is by a factor of about 2better than the corresponding error for the HIPPARCOS values of 1.83mas/year (cosmic errors included).

The accretion of brown dwarfs and planets by giant stars - II. Solar-mass stars on the red giant branch
This paper extends our previous study of planet/brown dwarf accretion bygiant stars to solar-mass stars located on the red giant branch. Themodel assumes that the planet is dissipated at the bottom of theconvective envelope of the giant star. The evolution of the giant isthen followed in detail. We analyse the effects of different accretionrates and different initial conditions. The computations indicate thatthe accretion process is accompanied by a substantial expansion of thestar, and, in the case of high accretion rates, hot bottom burning canbe activated. The possible observational signatures that accompany theengulfing of a planet are also extensively investigated. They includethe ejection of a shell and a subsequent phase of IR emission, anincrease in the ^7Li surface abundance and a potential stellarmetallicity enrichment, spin-up of the star because of the deposition oforbital angular momentum, the possible generation of magnetic fields andthe related X-ray activity caused by the development of shear at thebase of the convective envelope, and the effects on the morphology ofthe horizontal branch in globular clusters. We propose that the IRexcess and high Li abundance observed in 4-8per cent of the G and Kgiants originate from the accretion of a giant planet, a brown dwarf ora very low-mass star.

The 74th Special Name-list of Variable Stars
We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.

Library of Medium-Resolution Fiber Optic Echelle Spectra of F, G, K, and M Field Dwarfs to Giant Stars
We present a library of Penn State Fiber Optic Echelle (FOE)observations of a sample of field stars with spectral types F to M andluminosity classes V to I. The spectral coverage is from 3800 to 10000Å with a nominal resolving power of 12,000. These spectra includemany of the spectral lines most widely used as optical and near-infraredindicators of chromospheric activity such as the Balmer lines (Hαto Hepsilon), Ca II H & K, the Mg I b triplet, Na I D_1, D_2, He ID_3, and Ca II IRT lines. There are also a large number of photosphericlines, which can also be affected by chromospheric activity, andtemperature-sensitive photospheric features such as TiO bands. Thespectra have been compiled with the goal of providing a set of standardsobserved at medium resolution. We have extensively used such data forthe study of active chromosphere stars by applying a spectralsubtraction technique. However, the data set presented here can also beutilized in a wide variety of ways ranging from radial velocitytemplates to study of variable stars and stellar population synthesis.This library can also be used for spectral classification purposes anddetermination of atmospheric parameters (T_eff, logg, [Fe/H]). A digitalversion of all the fully reduced spectra is available via ftp and theWorld Wide Web (WWW) in FITS format.

Speckle Interferometry of New and Problem HIPPARCOS Binaries
The ESA Hipparcos satellite made measurements of over 12,000 doublestars and discovered 3406 new systems. In addition to these, 4706entries in the Hipparcos Catalogue correspond to double star solutionsthat did not provide the classical parameters of separation and positionangle (rho,theta) but were the so-called problem stars, flagged ``G,''``O,'' ``V,'' or ``X'' (field H59 of the main catalog). An additionalsubset of 6981 entries were treated as single objects but classified byHipparcos as ``suspected nonsingle'' (flag ``S'' in field H61), thusyielding a total of 11,687 ``problem stars.'' Of the many ground-basedtechniques for the study of double stars, probably the one with thegreatest potential for exploration of these new and problem Hipparcosbinaries is speckle interferometry. Results are presented from aninspection of 848 new and problem Hipparcos binaries, using botharchival and new speckle observations obtained with the USNO and CHARAspeckle cameras.

Stellar radii of M giants
We determine the stellar radii of the M giant stars in the Hipparcoscatalogue that have a parallax measured to better than 20% accuracy.This is done with the help of a relation between a visual surfacebrightness parameter and the Cousins (V - I) colour index, which wecalibrate with M giants with published angular diameters.The radii of(non-Mira) M giants increase from a median value of 50 R_Sun at spectraltype M0 III to 170 R_Sun at M7/8 III. Typical intermediate giant radiiare 65 R_Sun for M1/M2, 90 R_Sun for M3, 100 R_Sun for M4, 120 R_Sun forM5 and 150 R_Sun for M6. There is a large intrinsic spread for a givenspectral type. This variance in stellar radius increases with latertypes but in relative terms, it remains constant.We determineluminosities and, from evolutionary tracks, stellar masses for oursample stars. The M giants in the solar neighbourhood have masses in therange 0.8-4 M_Sun. For a given spectral type, there is a close relationbetween stellar radius and stellar mass. We also find a linear relationbetween the mass and radius of non-variable M giants. With increasingamplitude of variability we have larger stellar radii for a given mass.

Radii and effective temperatures for K and M giants and supergiants. II.
Not Available

The ROSAT all-sky survey catalogue of optically bright late-type giants and supergiants
We present X-ray data for all late-type (A, F, G, K, M) giants andsupergiants (luminosity classes I to III-IV) listed in the Bright StarCatalogue that have been detected in the ROSAT all-sky survey.Altogether, our catalogue contains 450 entries of X-ray emitting evolvedlate-type stars, which corresponds to an average detection rate of about11.7 percent. The selection of the sample stars, the data analysis, thecriteria for an accepted match between star and X-ray source, and thedetermination of X-ray fluxes are described. Catalogue only available atCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Extension of the effective temperature scale of giants to types later than M6
Effective temperatures for nine giant stars are derived from recentdiameter determinations at 2.2mu m with the FLUOR beam combiner on theIOTA interferometer. A good overlap with previous studies for starsearlier than M6 is verified. The present paper extends the temperaturescale of giant stars based on direct measurements to types between M6and M8.

On the X-ray emission from M-type giants
We have searched for X-ray emission from M-type giants and supergiantslisted in the Bright Star Catalogue (BSC) in the data of the ROSATall-sky survey (RASS). These stars lie to the far right of the X-raydividing line and are thus not expected to be X-ray sources. Any X-raydetection would therefore violate the common paradigm of X-ray darkM-type giants beyond the X-ray dividing line. We found 11 BSC M-typegiants and supergiants to coincide with RASS X-ray sources. While for 4stars the X-ray emission is very likely related to their cataclysmic orsymbiotic nature or can be attributed to a visual G-type companion, theother 7 stars are candidates for intrinsic X-ray emission. Of theseobjects, 3 have a rather large offset between optical and X-rayposition, so their proper identification with late-type giants is atleast questionable. For the remaining four stars, we obtained opticallow-dispersion spectra in order to search for emission lines indicativeof a possible symbiotic nature. None of these stars shows any brightemission lines, so they are probably quite normal M-type giants. Wediscuss possible origins of X-ray emission in these stars and theimportance of evolutionary aspects. Based on observations by the ROSATand Calar Alto Observatories

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Radii and Effective Temperatures for K and M Giants and Supergiants
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....111.1705D&db_key=AST

The Stellar Content of Star Stream I
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....111.1615E&db_key=AST

H-alpha measurements for cool giants
The H-alpha line in a cool star is usually an indication of theconditions in its chromosphere. I have collected H-alpha spectra of manynorthern G-M stars, which show how the strength and shape of the H-alphaline change with spectral type. These observations detect surprisinglittle variation in absoption-line depth (Rc approximately0.23 +/- 0.08), linewidth (FWHD approximately 1.44 +/- 0.22 A), orequivalent width (EW approximately 1.12 +/- 0.17 A) among G5-M5 IIIgiants. Lines in the more luminous stars tend to be broader and strongerby 30%-40% than in the Class III giants, while the H-alpha absorptiontends to weaken among the cooler M giants. Velocities of H-alpha andnearby photospheric lines are the same to within 1.4 +/- 4.4 km/s forthe whole group. To interpret these observations, I have calculatedH-alpha profiles, Ly-alpha strengths, and (C II) strengths for a seriesof model chromospheres representing a cool giant star like alpha Tau.Results are sensitive to the mass of the chromosphere, to chromospherictemperature, to clumping of the gas, and to the assumed physics of lineformation. The ubiquitous nature of H-alpha in cool giants and the greatdepth of observed lines argue that chromospheres of giants cover theirstellar disks uniformly and are homogeneous on a large scale. This isquite different from conditions on a small scale: To obtain a highenough electron density with the theoretical models, both to explain theexitation of hydrogen and possibly also to give the observed C IImultiplet ratios, the gas is probably clumped. The 6540-6580 A spectraof 240 stars are plotted in an Appendix, which identifies the date ofobservation and marks positions of strong telluric lines on eachspectrum. I assess the effects of telluric lines and estimates that thestrength of scattered light is approximately 5% of the continuum inthese spectra. I give the measurements of H-alpha as well as equivalentwidths of two prominent photospheric lines, Fe I lambda 6546 and Ca Ilambda 6572, which strengthen with advancing spectral type.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Spectral classification of symbiotic stars in the near infrared.
We present preliminary results of near infrared observations of 6 S typesymbiotic binaries, made with the aim of confirming and improvingprevious spectral classifications of the cool component. RepresentativeCCD spectra of some symbiotic and comparison stars in the region of theCaII infrared triplet are displayed. On our spectrograms at a dispersionof 33A/mm the FeI/TiII blend at 8469A and the FeI line at 8514A are moreuseful luminosity discriminants for symbiotics than the CaII triplet(8498, 8542 and 8662A) which is disturbed in some symbiotic spectra byemission components of the CaII triplet and of Paschen lines. Thetemperature classification of late M cool components can be reliablyderived from strengths of TiO and VO bands. Preliminary new spectraltypes and luminosity classes of six observed symbiotic stars aredescribed and discussed.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:うしかい座
Right ascension:14h46m06.00s
Declination:+15°07'55.0"
Apparent magnitude:5.63
Distance:278.552 parsecs
Proper motion RA:-85.7
Proper motion Dec:18.4
B-T magnitude:7.564
V-T magnitude:6.021

Catalogs and designations:
Proper NamesEK Boötis
  (Edit)
HD 1989HD 130144
TYCHO-2 2000TYC 1478-509-1
USNO-A2.0USNO-A2 1050-07283711
BSC 1991HR 5512
HIPHIP 72208

→ Request more catalogs and designations from VizieR