בית     התחל מכאן     To Survive in the Universe    
Inhabited Sky
    News@Sky     תמונת אסטרו     האוסף     קבוצת דיון     Blog New!     שאלות נפוצות     עיתונות     כניסה  

δ And


תוכן

תמונות

הוסף תמונה שלך

DSS Images   Other Images


מאמרים קשורים

Prospects for population synthesis in the H band: NeMo grids of stellar atmospheres compared to observations
Context: .For applications in population synthesis, libraries oftheoretical stellar spectra are often considered an alternative totemplate libraries of observed spectra, because they allow a completesampling of stellar parameters. Most of the attention in publishedtheoretical spectral libraries has been devoted to the visual wavelengthrange.Aims.The goal of the present work is to explore the near-infraredrange where few observed fully calibrated spectra and no theoreticallibraries are available.Methods.We make a detailed comparison oftheoretical spectra in the range 1.57-1.67 μm for spectral types fromA to early M and for giant and dwarf stars, with observed stellarspectra at resolutions around 3000, which would be sufficient todisentangle the different groups of late-type stars. We selected theNeMo grids of stellar atmospheres to perform this comparison.Results.Wefirst demonstrate that observed spectral flux distributions can bematched very well with theoretical ones for almost the entire parameterrange covered by the NeMo grids at moderate resolution in the visualrange. In the infrared range, although the overall shape of the observedflux distributions still matches reasonably well, the individualspectral features are reproduced by the theoretical spectra only forstars earlier than mid F type. For later spectral types the differencesincrease, and theoretical spectra of K type stars have systematicallyweaker line features than those found in observations. Thesediscrepancies are traced back to stem primarily from incomplete data onneutral atomic lines, although some of them are also related tomolecules.Conclusions.Libraries of theoretical spectra for A to early Mtype stars can be successfully used in the visual regions for populationsynthesis, but their application in the infrared is restricted to earlyand intermediate type stars. Improving atomic data in the near infraredis a key element in making the construction of reliable libraries ofstellar spectra feasible in the infrared.

Predicting accurate stellar angular diameters by the near-infrared surface brightness technique
I report on the capabilities of the near-infrared (near-IR) surfacebrightness technique to predict reliable stellar angular diameters asaccurate as <~2 per cent using standard broad-band Johnson photometryin the colour range -0.1 <= (V-K)O<= 3.7 includingstars of A, F, G, K spectral type. This empirical approach is fast toapply and leads to estimated photometric diameters in very goodagreement with recent high-precision interferometric diametermeasurements available for non-variable dwarfs and giants, as well asfor Cepheid variables. Then I compare semi-empirical diameters predictedby model-dependent photometric and spectrophotometric (SP) methods withnear-IR surface brightness diameters adopted as empirical referencecalibrators. The overall agreement between all these methods is withinapproximately +/-5 per cent, confirming previous works. However, on thesame scale of accuracy, there is also evidence for systematic shiftspresumably as a result of an incorrect representation of the stellareffective temperature in the model-dependent results. I also comparemeasurements of spectroscopic radii with near-IR surface brightnessradii of Cepheids with known distances. Spectroscopic radii are found tobe affected by a scatter as significant as >~9 per cent, which is atleast three times greater than the formal error currently claimed by thespectroscopic technique. In contrast, pulsation radii predicted by theperiod-radius (PR) relation according to the Cepheid period result aresignificantly less dispersed, indicating a quite small scatter as aresult of the finite width of the Cepheid instability strip, as expectedfrom pulsation theory. The resulting low level of noise stronglyconfirms our previous claims that the pulsation parallaxes are the mostaccurate empirical distances presently available for Galactic andextragalactic Cepheids.

Variability of Stars in the Pulkovo Spectrophotometric Catalog
We present the results of a statistical study of brightness variabilityfor 693 stars of the Pulkovo spectrophotometric database in fivespectral bands in the range λλ 320 1080 nm. Significantbrightness variations were detected in at least one spectral bandagainst the background of the random noise for one-third of the starsnot earlier believed to be variable. A comparison of the distributionsof these variations in amplitude and spectral band for the normal andvariable stars shows that variability is inherent to most stars to someextent and is often wavelength dependent.

The Effective Temperature Scale of FGK Stars. II. Teff:Color:[Fe/H] Calibrations
We present up-to-date metallicity-dependent temperature versus colorcalibrations for main-sequence and giant stars based on temperaturesderived with the infrared flux method (IRFM). Seventeen colors in thephotometric systems UBV, uvby, Vilnius, Geneva, RI(Cousins), DDO,Hipparcos-Tycho, and Two Micron All Sky Survey (2MASS) have beencalibrated. The spectral types covered by the calibrations range from F0to K5 (7000K>~Teff>~4000K) with some relationsextending below 4000 K or up to 8000 K. Most of the calibrations arevalid in the metallicity range -3.5>~[Fe/H]>~0.4, although some ofthem extend to as low as [Fe/H]~-4.0. All fits to the data have beenperformed with more than 100 stars; standard deviations range from 30 to120 K. Fits were carefully performed and corrected to eliminate thesmall systematic errors introduced by the calibration formulae. Tablesof colors as a function of Teff and [Fe/H] are provided. Thiswork is largely based on the study by A. Alonso and collaborators; thus,our relations do not significantly differ from theirs except for thevery metal-poor hot stars. From the calibrations, the temperatures of 44dwarf and giant stars with direct temperatures available are obtained.The comparison with direct temperatures confirms our finding in Paper Ithat the zero point of the IRFM temperature scale is in agreement, tothe 10 K level, with the absolute temperature scale (that based onstellar angular diameters) within the ranges of atmospheric parameterscovered by those 44 stars. The colors of the Sun are derived from thepresent IRFM Teff scale and they compare well with those offive solar analogs. It is shown that if the IRFM Teff scaleaccurately reproduces the temperatures of very metal-poor stars,systematic errors of the order of 200 K, introduced by the assumption of(V-K) being completely metallicity independent when studying verymetal-poor dwarf stars, are no longer acceptable. Comparisons with otherTeff scales, both empirical and theoretical, are also shownto be in reasonable agreement with our results, although it seems thatboth Kurucz and MARCS synthetic colors fail to predict the detailedmetallicity dependence, given that for [Fe/H]=-2.0, differences as highas approximately +/-200 K are found.

Statistical Constraints for Astrometric Binaries with Nonlinear Motion
Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

Mg II chromospheric radiative loss rates in cool active and quiet stars
The Mg II k emission line is a good indicator of the level ofchromospheric activity in late-type stars. We investigate the dependenceof this activity indicator on fundamental stellar parameters. To thispurpose we use IUE observations of the Mg II k line in 225 late-typestars of luminosity classes I-V, with different levels of chromosphericactivity. We first re-analyse the relation between Mg II k lineluminosity and stellar absolute magnitude, performing linear fits to thepoints. The ratio of Mg II surface flux to total surface flux is foundto be independent of stellar luminosity for evolved stars and toincrease with decreasing luminosity for dwarfs. We also analyse the MgII k line surface flux-metallicity connection. The Mg II k emissionlevel turns out to be not dependent on metallicity. Finally, the Mg II kline surface flux-temperature relation is investigated by treatingseparately, for the first time, a large sample of very active and normalstars. The stellar surface fluxes in the k line of normal stars arefound to be strongly dependent on the temperature and slightly dependenton the gravity, thus confirming the validity of recently proposedmodels. In contrast, data relative to RS CVn binaries and BY Dra stars,which show very strong chromospheric activity, are not justified in theframework of a description based only on acoustic waves and uniformlydistributed magnetic flux tubes so that they require more detailedmodels.

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Ca II K Emission-Line Asymmetries Among Red Giants
Measurements of the asymmetry of the K2 emission line of CaII have been made for a sample of bright field giants with B-V>1.15observed with the Cassegrain echelle spectrometer on the McDonaldObservatory 2.1 m telescope. The asymmetry of the Ca II K2line is quantified through measurement of a parameter V/R, which isdefined as the ratio between the maximum counts recorded in the violetand red components of the double-peaked emission profile. Red-maximumasymmetry (V/R<1.0) is found in our sample of 35 giants only amongstars with B-V>1.35, a trend that is still maintained (with oneexception) with the inclusion of an additional sample of giantspreviously observed by us with the same spectrograph. Althoughexceptional stars can be found in the literature, the data support anearlier finding by R. Stencel that among luminosity class III fieldgiants the occurrence of V/R<1.0 is generally restricted to effectivetemperatures cooler than 4320 K. This limit may coincide with the onsetof pulsation.

A second look at the orbit of HR 6388
Not Available

Improved Baade-Wesselink surface brightness relations
Recent, and older accurate, data on (limb-darkened) angular diameters iscompiled for 221 stars, as well as BVRIJK[12][25] magnitudes for thoseobjects, when available. Nine stars (all M-giants or supergiants)showing excess in the [12-25] colour are excluded from the analysis asthis may indicate the presence of dust influencing the optical andnear-infrared colours as well. Based on this large sample,Baade-Wesselink surface brightness (SB) relations are presented fordwarfs, giants, supergiants and dwarfs in the optical and near-infrared.M-giants are found to follow different SB relations from non-M-giants,in particular in V versus V-R. The preferred relation for non-M-giantsis compared to the earlier relation by Fouqué and Gieren (basedon 10 stars) and Nordgren et al. (based on 57 stars). Increasing thesample size does not lead to a lower rms value. It is shown that theresiduals do not correlate with metallicity at a significant level. Thefinally adopted observed angular diameters are compared to thosepredicted by Cohen et al. for 45 stars in common, and there isreasonable overall, and good agreement when θ < 6 mas.Finally, I comment on the common practice in the literature to average,and then fix, the zero-point of the V versus V-K, V versus V-R and Kversus J-K relations, and then rederive the slopes. Such a commonzero-point at zero colour is not expected from model atmospheres for theV-R colour and depends on gravity. Relations derived in this way may bebiased.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

The Nuclear Gas Dynamics and Star Formation of Markarian 231
We report adaptive optics H- and K-band spectroscopy of the inner fewarcseconds of the luminous merger/ultraluminous infrared galaxy(ULIRG)/QSO Mrk 231, at spatial resolutions as small as 0.085". For thefirst time we have been able to resolve the active star-forming regionclose to the active galactic nucleus (AGN) using stellar absorptionfeatures, finding that its luminosity profile is well represented by anexponential function with a disk scale length 0.18"-0.24" (150-200 pc),and implying that the stars exist in a disk rather than a spheroid. Thestars in this region are also young (10-100 Myr), and it therefore seemslikely that they have formed in situ in the gas disk, which itselfresulted from the merger. The value of the stellar velocity dispersion(~100 km s-1 rather than the usual few times 10 kms-1 in large-scale disks) is a result of the large masssurface density of the disk. The stars in this region have a combinedmass of at least 1.6×109 Msolar, and accountfor 25%-40% of the bolometric luminosity of the entire galaxy. At ourspatial resolution the stellar light in the core is diluted by more thana factor of 10 even in the H band by continuum emission from hot dustaround the AGN. We have detected the 2.12 μm 1-0 S(1) H2and 1.64 μm [Fe II] lines out to radii exceeding 0.5". The kinematicsfor the two lines are very similar to each other as well as to thestellar kinematics, and broadly consistent with the nearly face-onrotating disk reported in the literature and based on interferometric CO1-0 and CO 2-1 measurements of the cold gas. However, they suggest amore complex situation in which the inner 0.2"-0.3" (200 pc) is warpedout of its original disk plane. Such a scenario is supported by theprojected shape of the nuclear stellar disk, the major axis of which issignificantly offset from the nominal direction, and by the pronouncedshift on very small scales in the direction of the radio jet axis, whichhas been reported in the literature.The near-infrared data presented herein were obtained at the W. M. KeckObservatory, which is operated as a scientific partnership among theCalifornia Institute of Technology, the University of California, andthe National Aeronautics and Space Administration. The Observatory wasmade possible by the generous financial support of the W. M. KeckFoundation.

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

Age Dependence of the Vega Phenomenon: Observations
We study the time dependency of Vega-like excesses using infraredstudies obtained with the imaging photopolarimeter ISOPHOT on board theInfrared Space Observatory. We review the different studies published onthis issue and critically check and revise ages and fractionalluminosities in the different samples. The conclusions of our studydiffer significantly from those obtained by other authors (e.g., Hollandand coworkers; Spangler and coworkers), who suggested that there is aglobal power law governing the amount of dust seen in debris disks as afunction of time. Our investigations lead us to conclude that (1) forstars at most ages, a large spread in fractional luminosity occurs, but(2) there are few very young stars with intermediate or small excesses;(3) the maximum excess seen in stars of a given age is aboutfd~10-3, independent of time; and (4) Vega-likeexcess is more common in young stars than in old stars.

Atmospheric Models of Red Giants with Massive-Scale Non-Local Thermodynamic Equilibrium
We present plane-parallel and spherical LTE and non-LTE (NLTE)atmospheric models of a variety of stellar parameters of the red giantstar Arcturus (α Boo, HD 124897, HR 5340) and study their abilityto fit the measured absolute flux distribution. Our NLTE models includetens of thousands of the strongest lines in NLTE, and we investigateseparately the effects of treating the light metals and the Fe groupelements Fe and Ti in NLTE. We find that the NLTE effects of Fe groupelements on the model structure and Fλ distributionare much more important than the NLTE effects of all the light metalscombined, and serve to substantially increase the violet and near-UVFλ levels as a result of NLTE Fe overionization. Boththe LTE and NLTE models predict significantly more flux in the blue andUV bands than is observed. We find that within the moderately metal-poormetallicity range, the effect of NLTE on the overall UV flux leveldecreases with decreasing metallicity. These results suggest that theremay still be important UV opacity missing from the models. We find thatmodels of solar metallicity giants of spectral type similar to that ofArcturus fit well the observed flux distributions of those stars fromthe red to the near-UV band. This suggests that the blue and near-UVflux discrepancy is metallicity dependent, increasing with decreasingmetallicity.

Angular Diameters of Stars from the Mark III Optical Interferometer
Observations of 85 stars were obtained at wavelengths between 451 and800 nm with the Mark III Stellar Interferometer on Mount Wilson, nearPasadena, California. Angular diameters were determined by fitting auniform-disk model to the visibility amplitude versus projected baselinelength. Half the angular diameters determined at 800 nm have formalerrors smaller than 1%. Limb-darkened angular diameters, effectivetemperatures, and surface brightnesses were determined for these stars,and relationships between these parameters are presented. Scatter inthese relationships is larger than would be expected from themeasurement uncertainties. We argue that this scatter is not due to anunderestimate of the angular diameter errors; whether it is due tophotometric errors or is intrinsic to the relationship is unresolved.The agreement with other observations of the same stars at the samewavelengths is good; the width of the difference distribution iscomparable to that estimated from the error bars, but the wings of thedistribution are larger than Gaussian. Comparison with infraredmeasurements is more problematic; in disagreement with models, coolerstars appear systematically smaller in the near-infrared than expected,warmer stars larger.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

Catalogue of averaged stellar effective magnetic fields. I. Chemically peculiar A and B type stars
This paper presents the catalogue and the method of determination ofaveraged quadratic effective magnetic fields < B_e > for 596 mainsequence and giant stars. The catalogue is based on measurements of thestellar effective (or mean longitudinal) magnetic field strengths B_e,which were compiled from the existing literature.We analysed the properties of 352 chemically peculiar A and B stars inthe catalogue, including Am, ApSi, He-weak, He-rich, HgMn, ApSrCrEu, andall ApSr type stars. We have found that the number distribution of allchemically peculiar (CP) stars vs. averaged magnetic field strength isdescribed by a decreasing exponential function. Relations of this typehold also for stars of all the analysed subclasses of chemicalpeculiarity. The exponential form of the above distribution function canbreak down below about 100 G, the latter value representingapproximately the resolution of our analysis for A type stars.Table A.1 and its references are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/407/631 and Tables 3 to 9are only available in electronic form at http://www.edpsciences.org

Reprocessing the Hipparcos Intermediate Astrometric Data of spectroscopic binaries. II. Systems with a giant component
By reanalyzing the Hipparcos Intermediate Astrometric Data of a largesample of spectroscopic binaries containing a giant, we obtain a sampleof 29 systems fulfilling a carefully derived set of constraints andhence for which we can derive an accurate orbital solution. Of these,one is a double-lined spectroscopic binary and six were not listed inthe DMSA/O section of the catalogue. Using our solutions, we derive themasses of the components in these systems and statistically analyzethem. We also briefly discuss each system individually.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997) and on data collected with theSimbad database.

Astrometric Orbits from a Direct Combination of Ground-Based Catalogs with the Hipparcos Catalog
Not Available

Search for the General Magnetic Fields in Late-Type Giants
Surface-averaged longitudinal magnetic-field components (by analogy withthe Sun called the general magnetic field) have been measured for 15late-type giants with an accuracy of several Gauss. Statisticallysignificant fields were detected for nine of these stars. Themagnetic-field values obtained suggest the existence of general magneticfields in these giants.

The Rotation of Binary Systems with Evolved Components
In the present study we analyze the behavior of the rotational velocity,vsini, for a large sample of 134 spectroscopic binary systems with agiant star component of luminosity class III, along the spectral regionfrom middle F to middle K. The distribution of vsini as a function ofcolor index B-V seems to follow the same behavior as their singlecounterparts, with a sudden decline around G0 III. Blueward of thisspectral type, namely, for binary systems with a giant F-type component,one sees a trend for a large spread in the rotational velocities, from afew to at least 40 km s-1. Along the G and K spectral regionsthere are a considerable number of binary systems with moderate tomoderately high rotation rates. This reflects the effects ofsynchronization between rotation and orbital motions. These rotatorshave orbital periods shorter than about 250 days and circular or nearlycircular orbits. Except for these synchronized systems, the largemajority of binary systems with a giant component of spectral type laterthan G0 III are composed of slow rotators.

Photocentric orbits from a direct combination of ground-based astrometry with Hipparcos. I. Comparison with known orbits
Complementing the Proper Motions of Fundamental Stars catalogue byGontcharov et al. (CDS, I-266) the photocentric orbits of someFK5/Hipparcos stars are calculated in a direct combination of theHipparcos data with astrometric ground-based observational catalogueshaving epochs later than 1939. Some capabilities and limitations of thismethod are discussed in a comparison of our results with known orbits ofSirius, Procyon, Rasalhague, mu Cas and others. We conclude that thisdirect combination is an acceptable tool to discover and investigatephotocentric orbits with periods from 10 to 55 years and the semi-majoraxis of apparent ellipses >0.08 arcsec. It is particularly suitablefor pairs with large magnitude difference as well as for calculation ofthe preliminary orbits of new astrometric binaries which will beconsidered in forthcoming papers. In this paper new photocentric orbitsand component masses are calculated for 4 pairs: alpha UMa, beta LMi,delta And and xi Aqr.

CHARM: A Catalog of High Angular Resolution Measurements
The Catalog of High Angular Resolution Measurements (CHARM) includesmost of the measurements obtained by the techniques of lunaroccultations and long-baseline interferometry at visual and infraredwavelengths, which have appeared in the literature or have otherwisebeen made public until mid-2001. A total of 2432 measurements of 1625sources are included, along with extensive auxiliary information. Inparticular, visual and infrared photometry is included for almost allthe sources. This has been partly extracted from currently availablecatalogs, and partly obtained specifically for CHARM. The main aim is toprovide a compilation of sources which could be used as calibrators orfor science verification purposes by the new generation of largeground-based facilities such as the ESO Very Large Interferometer andthe Keck Interferometer. The Catalog is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/386/492, and from theauthors on CD-Rom.

High-Resolution Spectroscopic Observations of Hipparcos Red Clump Giants: Metallicity and Mass Determinations
We obtain high-resolution and high signal-to-noise ratio spectra of 39red clump giants selected from the Hipparcos Catalogue. We determinetheir atmospheric parameters, iron abundances, α-elementenhancements, and masses. We find that the sample can be divided into ametal-poor group and a metal-rich group. The majority of the stars aremetal-rich (Z>0.3 Zsolar) with mass around 2Msolar, while the metal-poor group has lower surface gravityand lower mass. The variation of α-element abundances with [Fe/H]agrees with that of local G and K disk dwarfs. We also show that themetallicity is weakly correlated with the I-band absolute magnitude andthe V-I color, in agreement with Udalski's recent findings. We make thehigh-resolution spectra available over the internet for interestedreaders.

Extent of Excess Far-Infrared Emission around Luminosity Class III Stars
With the Infrared Space Observatory, we conducted 3×3 pixelimaging photometry of 12 luminosity class III stars, which werepreviously presumed to have dust particles around them, at far-infraredwavelengths (60 and 90 μm). Eleven out of 12 targets show a peak ofexcess (above photosphere) far-infrared emission at the location of thestar, implying that the dust particles are truly associated with stars.To estimate the size of the excess emission source, the flux ratio ofcenter to boundary pixels of the 3×3 array was examined. Theradius of the dust emission is found to be ~3000 to ~10,000 AU for athin shell distribution and ~5000 to ~25,000 AU for a uniformdistribution. We consider three models for the origin of the dust:disintegration of comets, sporadic dust ejection from the star, andemission from nearby interstellar cirrus. The data seem to rule out thefirst model (as far as the ``Kuiper belt-like'' particles are assumed tobe large blackbody grains) but do not enable us to choose between theother two models.

Comparison of Stellar Angular Diameters from the NPOI, the Mark III Optical Interferometer, and the Infrared Flux Method
The Navy Prototype Optical Interferometer (NPOI) has been used tomeasure the angular diameters of 41 late-type giant and supergiant starspreviously observed with the Mark III optical interferometer. Sixteen ofthese stars have published angular diameters based on model atmospheres(infrared flux method, IRFM). Comparison of these angular diametersshows that there are no systematic offsets between any pair of datasets. Furthermore, the reported uncertainties in the angular diametersmeasured using both interferometers are consistent with the distributionof the differences in the diameters. The distribution of diameterdifferences between the interferometric and model atmosphere angulardiameters are consistent with uncertainties in the IRFM diameters of1.4%. Although large differences in angular diameter measurements areseen for three stars, the data are insufficient to determine whetherthese differences are due to problems with the observations or are dueto temporal changes in the stellar diameters themselves.

The long-period companions of multiple stars tend to have moderate eccentricities
We examined the statistics of an angle gamma between the radius vectorof a visual companion of a multiple star and the vector of its apparentrelative motion in the system. Its distribution f(gamma ) is related tothe orbital eccentricity distribution in the investigated sample. Wefound that for the wide physical subsystems of the 174 objects from theMultiple Star Catalogue f(gamma ) is bell-shaped. The Monte-Carlosimulations have shown that our f(gamma ) corresponds to the populationof the moderate-eccentricity orbits and is not compatible with thelinear distribution f(e)=2e which follows from stellar dynamics andseems to hold for wide binaries. This points to the absence of highlyelongated orbits among the outer subsystems of multiple stars. Theconstraint of dynamical stability of triple systems is not sufficient toexplain the ``rounded-off'' outer orbits; instead, we speculate that itcan result from the angular momentum exchange in multiple systems duringtheir early evolution.

On the Wilson-Bappu relationship in the Mg II k line
An investigation is carried out on the Wilson-Bappu effect in the Mg Iik line at 2796.34 Å. The work is based on a selection of 230 starsobserved by both the IUE and HIPPARCOS satellites, covering a wide rangeof spectral types (F to M) and absolute visual magnitudes (-5.4<=MV <=9.0). A semi-automatic procedure is used to measurethe line widths, which applies also in the presence of strong centralabsorption reversal. The Wilson-Bappu relationship here provided isconsidered to represent an improvement over previous recent results forthe considerably larger data sample used, as well as for a properconsideration of the measurement errors. No evidence has been found fora possible dependence of the WB effect on stellar metallicity andeffective temperature.

הכנס מאמר חדש


לינקים קשורים

  • - לא נמצאו לינקים -
הכנס לינק חדש


משמש של הקבוצה הבאה


תצפית ומידע אסטרומטרי

קבוצת-כוכבים:אנדרומדה
התרוממות ימנית:00h39m19.70s
סירוב:+30°51'39.0"
גודל גלוי:3.27
מרחק:31.066 פארסק
תנועה נכונה:121
תנועה נכונה:-85.3
B-T magnitude:4.936
V-T magnitude:3.405

קטלוגים וכינוים:
שם עצם פרטי   (Edit)
Bayerδ And
Flamsteed31 And
HD 1989HD 3627
TYCHO-2 2000TYC 2275-1753-1
USNO-A2.0USNO-A2 1200-00286480
BSC 1991HR 165
HIPHIP 3092

→ הזמן עוד קטלוגים וכינוים מוזיר