Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 33117


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy's Evolution (SAGE). I. Overview and Initial Results
We are performing a uniform and unbiased imaging survey of the LargeMagellanic Cloud (LMC; ~7deg×7deg) using theIRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160 μm)instruments on board the Spitzer Space Telescope in the Surveying theAgents of a Galaxy's Evolution (SAGE) survey, these agents being theinterstellar medium (ISM) and stars in the LMC. This paper provides anoverview of the SAGE Legacy project, including observing strategy, dataprocessing, and initial results. Three key science goals determined thecoverage and depth of the survey. The detection of diffuse ISM withcolumn densities >1.2×1021 H cm-2 permits detailed studies of dust processes in the ISM. SAGE'spoint-source sensitivity enables a complete census of newly formed starswith masses >3 Msolar that will determine the current starformation rate in the LMC. SAGE's detection of evolved stars withmass-loss rates >1×10-8 Msolaryr-1 will quantify the rate at which evolved stars injectmass into the ISM of the LMC. The observing strategy includes two epochsin 2005, separated by 3 months, that both mitigate instrumentalartifacts and constrain source variability. The SAGE data arenonproprietary. The data processing includes IRAC and MIPS pipelines anda database for mining the point-source catalogs, which will be releasedto the community in support of Spitzer proposal cycles 4 and 5. Wepresent initial results on the epoch 1 data for a region near N79 andN83. The MIPS 70 and 160 μm images of the diffuse dust emission ofthe N79/N83 region reveal a similar distribution to the gas emissions,especially the H I 21 cm emission. The measured point-source sensitivityfor the epoch 1 data is consistent with expectations for the survey. Thepoint-source counts are highest for the IRAC 3.6 μm band and decreasedramatically toward longer wavelengths, consistent with the fact thatstars dominate the point-source catalogs and the dusty objects detectedat the longer wavelengths are rare in comparison. The SAGE epoch 1point-source catalog has ~4×106 sources, and more areanticipated when the epoch 1 and 2 data are combined. Using Milky Way(MW) templates as a guide, we adopt a simplified point-sourceclassification to identify three candidate groups-stars without dust,dusty evolved stars, and young stellar objects-that offer a startingpoint for this work. We outline a strategy for identifying foreground MWstars, which may comprise as much as 18% of the source list, andbackground galaxies, which may comprise ~12% of the source list.

MSX, 2MASS, and the LARGE MAGELLANIC CLOUD: A Combined Near- and Mid-Infrared View
The Large Magellanic Cloud (LMC) has been observed by the MidcourseSpace Experiment (MSX) in the mid-infrared and the Two Micron All SkySurvey (2MASS) in the near-infrared. We have performed across-correlation of the 1806 MSX catalog sources and nearly 1.4 million2MASS cataloged point and extended sources and find 1664 matches. Usingthe available color information, we identify a number of stellarpopulations and nebulae, including main-sequence stars, giant stars, redsupergiants, carbon- and oxygen-rich asymptotic giant branch (AGB)stars, planetary nebulae, H II regions, and other dusty objects likelyassociated with early-type stars. A total of 731 of these sources haveno previous identification. We compile a listing of all objects, whichincludes photometry and astrometry. The 8.3 μm MSX sensitivity is thelimiting factor for object detection: only the brighter red objects,specifically the red supergiants, AGB stars, planetary nebulae, and H IIregions, are detected in the LMC. The remaining objects are likely inthe Galactic foreground. The spatial distribution of the infrared LMCsources may contribute to understanding stellar formation and evolutionand the overall galactic evolution. We demonstrate that a combined mid-and near-infrared photometric baseline provides a powerful means ofidentifying new objects in the LMC for future ground-based andspace-based follow-up observations.

A ROSAT PSPC catalogue of X-ray sources in the LMC region
We analyzed more than 200 ROSAT PSPC observations in a 10 by 10 degreefield centered on the Large Magellanic Cloud (LMC) and performed between1990 and 1994 to derive a catalogue of X-ray sources. The list contains758 sources with their X-ray properties. From cross-correlations of thePSPC catalogue with the SIMBAD data base and literature searches we givelikely identifications for 144 X-ray sources based on positionalcoincidence, but taking into account X-ray properties like hardnessratios and source extent. 46 known sources are associated with supernovaremnants (SNRs) and candidates in the LMC, most of them already detectedby previous X-ray missions. Including the new candidates from\cite[Haberl & Pietsch (1999)]{HP99} based on variability studies ofthe sources in our PSPC catalogue, the number of X-ray binaries in theLMC increased to 17 and that of the supersoft sources (SSSs) to 9. Theremaining ~ 50% of the identified sources comprise mainly foregroundstars (up to 57) and background extragalactic objects (up to 15). Theoften distinguished X-ray properties of the different source types wereused for a first classification of new, unknown X-ray sources. Eight newPSPC sources are classified as SNRs from their hardness ratios and onepromising new SNR candidate with extended X-ray emission is foundfurther north than all known SNRs. Three soft X-ray sources havehardness ratios compatible to those of the known SSSs. A selection onhardness ratios and X-ray to optical flux ratio further suggests 27foreground stars and 3 AGN.

Positional reference stars in the Magellanic Clouds
The equatorial coordinates are determined of 926 stars (mainly ofgalactic origin) in the direction of the Magellanic Clouds at the meanepoch T = 1978.4 with an overall accuracy characterized by the meanvalues of the O-C coordinates, Sa = 0.35 arcsec and Sd = 0.38 arcsec,calculated from the coordinates of the Perth reference stars. Thesevalues are larger than the accuracy expected for primary standard stars.They allow the new positions to be considered as those of reliablesecondary standard stars. The published positions correspond to anunquestionable improvement of the quality of the coordinates provided inthe current catalogs. This study represents an 'astrometric step' in thestarting of a 'Durchmusterung' of the Magellanic Clouds organized by deBoer (1988, 1989).

Long time baseline VBLUW photometry of four of the most luminous LMC supergiants HD 33579, HD 35343=S Dor, HDE 268757 and HDE 269006. I
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1979A&AS...38..151V&db_key=AST

Starlight polarization in the Magellanic cloud regions.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976A&AS...24..357S&db_key=AST

UBV photometry for supergiants of the Large Magellanic Cloud
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1975A&A....43..345B&db_key=AST

A Probable Periodicity in the Light Variation of the LMC Supergiant HD 33579
Photometry of the brightest supergiant of the LMC HD 33579 in 1971,1972, 1973 and 1974 shows evidence for a periodicity of around 90 days.The nature is probably pulsation.

Radial velocities from objective-prism plates in the direction of the Large Magellanic Cloud. List of 398 stars, LMC members. List of 1434 galactic stars, in the LMC direction
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1974A&AS...13..173F&db_key=AST

Additional observations of supergiants and foreground stars in the direction of the Large Magellanic Cloud
Abstract image available at:http://adsabs.harvard.edu/abs/1973A&AS....9..447B

Spectrographic and photometric observations of supergiants and foreground stars in the direction of the Large Magellanic Cloud
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972A&AS....6..249A&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Dorade
Right ascension:05h02m41.83s
Declination:-67°50'35.2"
Apparent magnitude:8.269
Distance:485.437 parsecs
Proper motion RA:-9.3
Proper motion Dec:9.2
B-T magnitude:9.428
V-T magnitude:8.365

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 33117
TYCHO-2 2000TYC 9161-999-1
USNO-A2.0USNO-A2 0150-02446051
HIPHIP 23466

→ Request more catalogs and designations from VizieR