Contents
Images
Upload your image
DSS Images Other Images
Related articles
Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.
| Catalogue of Ap, HgMn and Am stars We present a catalogue of 8205 known or suspected Ap, HgMn and Am stars.This paper is a major update of our first edition of the catalog of Apand Am stars and includes revised identifications, additional stars andrevised information obtained from the literature.Catalogue (full Table 1) is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/961
| General catalogue of AP and AM stars A catalog of all the known Ap and Am stars, containing a total of 6684objects, was prepared. The few stars that were wrongly considered as Apor Am star are noted as well as some others for which their identity asAp or Am stars is not yet well established. The catalog gives theidentificators and the main observational data for each star, includingthe magnitude, color, spectral type, duplicity, periodicity, magneticfield, and projected rotational velocity.
| UBV photometry of stars whose positions are accurately known. III UBV photometric observations of 417 stars at BD declination 35-49 degfrom the NPZT(74) catalog of Yasuda et al. (1982) and the AGK3R catalogof Corben (1978), obtained with the 40-cm Cassegrain reflector atKvistaberg Observatory during 1984-1985, are reported. The data arepresented in tables, and the mean errors per observation are given as0.016 mag in V, 0.011 mag in B-V, 0.012 mag in U-B for U less than 10,and 0.026 mag in U-B for U greater than 10.
| Observations spectrographiques d'etoiles A a spectre particulier et a raies metalliques. Not Available
| Catalogue et bibliographie des étoiles A à spectre particulier Not Available
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Lacerta |
Right ascension: | 22h57m08.85s |
Declination: | +47°11'07.7" |
Apparent magnitude: | 9.139 |
Proper motion RA: | 27.1 |
Proper motion Dec: | -3.9 |
B-T magnitude: | 9.626 |
V-T magnitude: | 9.18 |
Catalogs and designations:
|