Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 2213


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The TP-AGB phase. Lifetimes from C and M star counts in Magellanic Cloud clusters
Using available data for C and M giants with M_bol<-3.6 in MagellanicCloud clusters, we derive limits to the lifetimes for the correspondingevolutionary phases, as a function of stellar mass. The C-star phase isfound to have a duration between 2 and 3 Myr for stars in the mass rangefrom ~1.5 to 2.8 M_ȯ. There is also an indication that the peak ofC-star lifetime shifts to lower masses (from slightly above to slightlybelow 2 Mȯ) as we move from LMC to SMC metallicities.The M-giant lifetimes also peak at ~2 Mȯ in the LMC,with a maximum value of about 4 Myr, whereas in the SMC their lifetimesappear much shorter, but, actually, they are poorly constrained by thedata. These numbers constitute useful constraints to theoretical modelsof the TP-AGB phase. We show that several models in the literatureunderestimate the duration of the C-star phase at LMC metallicities.

Physical parameters of 15 intermediate-age LMC clusters from modelling of HST colour-magnitude diagrams
Aims.We analyzed HST/WFPC2 colour-magnitude diagrams (CMDs) of 15populous Large Magellanic Cloud (LMC) stellar clusters with ages between~0.3 Gyr and ~3 Gyr. These (V, B-V) CMDs are photometrically homogeneousand typically reach V ˜ 22. Accurate and self-consistent physicalparameters (age, metallicity, distance modulus and reddening) wereextracted for each cluster by comparing the observed CMDs with syntheticones. Methods: These determinations involved simultaneous statisticalcomparisons of the main-sequence fiducial line and the red clumpposition, offering objective and robust criteria to determine the bestmodels. The models explored a regular grid in the parameter spacecovered by previous results found in the literature. Control experimentswere used to test our approach and to quantify formal uncertainties. Results: In general, the best models show a satisfactory fit to thedata, constraining well the physical parameters of each cluster. Theage-metallicity relation derived by us presents a lower spread thansimilar results found in the literature for the same clusters. Ourresults are in accordance with the published ages for the oldestclusters, but reveal a possible underestimation of ages by previousauthors for the youngest clusters. Our metallicity results in generalagree with the ones based on spectroscopy of giant stars and with recentworks involving CMD analyses. The derived distance moduli implied by themost reliable solutions, correlate with the reddening values, asexpected from the non-negligible three-dimensional distribution of theclusters within the LMC. Conclusions: .The inferred spatialdistribution for these clusters is roughly aligned with the LMC disk,being also more scattered than recent numerical predictions, indicatingthat they were not formed in the LMC disk. The set of ages andmetallicities homogeneously derived here can be used to calibrateintegrated light studies applied to distant galaxies.

Ca II Triplet Spectroscopy of Large Magellanic Cloud Red Giants. I. Abundances and Velocities for a Sample of Populous Clusters
Using the FORS2 instrument on the Very Large Telescope, we have obtainednear-infrared spectra for more than 200 stars in 28 populous LMCclusters. This cluster sample spans a large range of ages (~1-13 Gyr)and metallicities (-0.3>~[Fe/H]>~-2.0) and has good areal coverageof the LMC disk. The strong absorption lines of the Ca II triplet areused to derive cluster radial velocities and abundances. We determinemean cluster velocities to typically 1.6 km s-1 and meanmetallicities to 0.04 dex (random error). For eight of these clusters,we report the first spectroscopically determined metallicities based onindividual cluster stars, and six of these eight have no publishedradial velocity measurements. Combining our data with archival HubbleSpace Telescope WFPC2 photometry, we find that the newly measuredcluster, NGC 1718, is one of the most metal-poor ([Fe/H]~-0.80)intermediate-age (~2 Gyr) inner disk clusters in the LMC. Similar towhat was found by previous authors, this cluster sample has radialvelocities consistent with that of a single rotating disk system, withno indication that the newly reported clusters exhibit halo kinematics.In addition, our findings confirm previous results that show that theLMC lacks the metallicity gradient typically seen in nonbarred spiralgalaxies, suggesting that the bar is driving the mixing of stellarpopulations in the LMC. However, in contrast to previous work, we findthat the higher metallicity clusters (>~-1.0 dex) in our sample showa very tight distribution (mean [Fe/H]=-0.48, σ=0.09), with notail toward solar metallicities. The cluster distribution is similar towhat has been found for red giant stars in the bar, which indicates thatthe bar and the intermediate-age clusters have similar star formationhistories. This is in good agreement with recent theoretical models thatsuggest the bar and intermediate-age clusters formed as a result of aclose encounter with the SMC ~4 Gyr ago.

A Database of 2MASS Near-Infrared Colors of Magellanic Cloud Star Clusters
The (rest-frame) near-IR domain contains important stellar populationdiagnostics and is often used to estimate masses of galaxies at low, aswell as high, redshifts. However, many stellar population models arestill relatively poorly calibrated in this part of the spectrum. Toallow an improvement of this calibration we present a new database ofintegrated near-IR JHKs magnitudes for 75 star clusters inthe Magellanic Clouds, using the Two Micron All Sky Survey (2MASS). Themajority of the clusters in our sample have robust age and metallicityestimates from color-magnitude diagrams available in the literature, andpopulate a range of ages from 10 Myr to 15 Gyr and a range in [Fe/H]from -2.17 to +0.01 dex. A comparison with matched star clusters in the2MASS Extended Source Catalog (XSC) reveals that the XSC only provides agood fit to the unresolved component of the cluster stellar population.We also compare our results with the often-cited single-channel JHKphotometry of Persson and coworkers and find significant differences,especially for their 30" diameter apertures, up to ~2.5 mag in the Kband, more than 1 mag in J-K, and up to 0.5 mag in H-K. Usingsimulations to center apertures based on maximum light throughput (asperformed by Persson et al.), we show that these differences can beattributed to near-IR-bright cluster stars (e.g., carbon stars) locatedaway from the true center of the star clusters. The wide age andmetallicity coverage of our integrated JHKs photometry sampleconstitute a fundamental data set for testing population synthesis modelpredictions and for direct comparison with near-IR observations ofdistant stellar populations.

Integrated-light VRI imaging photometry of globular clusters in the Magellanic Clouds
We present accurate integrated-light photometry in Johnson/Cousins V, Rand I for a sample of 28 globular clusters in the Magellanic Clouds. Themajority of the clusters in our sample have reliable age and metallicityestimates available in the literature. The sample encompasses agesbetween 50 Myr and 7 Gyr, and metallicities ([Fe/H]) between -1.5 and0.0 dex. The sample is dominated by clusters of ages between roughly 0.5and 2 Gyr, an age range during which the bolometric luminosity of simplestellar populations is dominated by evolved red giant branch stars andthermally pulsing asymptotic giant branch (TP-AGB) stars whosetheoretical colours are rather uncertain. The VRI colours presented inthis paper have been used to calibrate stellar population synthesismodel predictions.

Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters
We present a database of structural and dynamical properties for 153spatially resolved star clusters in the Milky Way, the Large and SmallMagellanic Clouds, and the Fornax dwarf spheroidal. This databasecomplements and extends others in the literature, such as those ofHarris and Mackey & Gilmore. Our cluster sample comprises 50 ``youngmassive clusters'' in the LMC and SMC, and 103 old globular clustersbetween the four galaxies. The parameters we list include central andhalf-light-averaged surface brightnesses and mass densities; core andeffective radii; central potentials, concentration parameters, and tidalradii; predicted central velocity dispersions and escape velocities;total luminosities, masses, and binding energies; central phase-spacedensities; half-mass relaxation times; and ``κ-space'' parameters.We use publicly available population-synthesis models to computestellar-population properties (intrinsic B-V colors, reddenings, andV-band mass-to-light ratios) for the same 153 clusters plus another 63globulars in the Milky Way. We also take velocity-dispersionmeasurements from the literature for a subset of 57 (mostly old)clusters to derive dynamical mass-to-light ratios for them, showing thatthese compare very well to the population-synthesis predictions. Thecombined data set is intended to serve as the basis for futureinvestigations of structural correlations and the fundamental plane ofmassive star clusters, including especially comparisons between thesystemic properties of young and old clusters.The structural and dynamical parameters are derived from fitting threedifferent models-the modified isothermal sphere of King; an alternatemodified isothermal sphere based on the ad hoc stellar distributionfunction of Wilson; and asymptotic power-law models withconstant-density cores-to the surface-brightness profile of eachcluster. Surface-brightness data for the LMC, SMC, and Fornax clustersare based in large part on the work of Mackey & Gilmore, but includesignificant supplementary data culled from the literature and importantcorrections to Mackey & Gilmore's V-band magnitude scale. Theprofiles of Galactic globular clusters are taken from Trager et al. Weaddress the question of which model fits each cluster best, finding inthe majority of cases that the Wilson models-which are spatially moreextended than King models but still include a finite, ``tidal'' cutoffin density-fit clusters of any age, in any galaxy, as well as or betterthan King models. Untruncated, asymptotic power laws often fit about aswell as Wilson models but can be significantly worse. We argue that theextended halos known to characterize many Magellanic Cloud clusters maybe examples of the generic envelope structure of self-gravitating starclusters, not just transient features associated strictly with youngage.

Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies
Evolutionary population synthesis models for a wide range ofmetallicities, ages, star formation histories, initial mass functionsand horizontal branch morphologies, including blue morphologies at highmetallicity, are computed. The model output comprises spectral energydistributions, colours, stellar M/L ratios, bolometric corrections andnear-infrared (IR) spectral line indices. The energetics of the postmain sequence evolutionary phases are evaluated with the fuelconsumption theorem. The impact on the models of the stellarevolutionary tracks (in particular with and without overshooting) isassessed. We find modest differences in synthetic broad-band colours asinduced by the use of different tracks in our code [e.g. Δ(V-K) ~0.08 mag, Δ(B-V) ~ 0.03 mag]. Noticeably, these differences aresubstantially smaller than the scatter among other models in theliterature, even when the latter adopt the same evolutionary tracks. Themodels are calibrated with globular cluster data from the Milky Way forold ages, and the Magellanic clouds plus the merger remnant galaxy NGC7252, both for young ages of ~0.1-2Gyr, in a large wavelength range fromthe U band to the K band. Particular emphasis is put on the contributionfrom the thermally pulsing asymptotic giant branch (TP-AGB) phase. Weshow that this evolutionary phase is crucial for the modelling of youngstellar populations by direct comparison with observed spectral energydistributions of Magellanic cloud clusters, which are characterized byrelatively high fluxes, both blueward and redward of the V band. We findthat the combination of the near-IR spectral indices C2 andH2O can be used to determine the metallicity of ~1 Gyrstellar populations. As an illustrative application, we re-analyse thespectral energy distributions of some of the high-z galaxies (2.4<~z<~ 2.9) observed with the Spitzer Space Telescope by Yan et al.Their high rest-frame near-IR fluxes is reproduced very well with themodels including TP-AGB stars for ages in the range ~0.6-1.5Gyr,suggesting formation redshifts for these objects around z~ 3-6.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Analyzing Starbursts Using Magellanic Cloud Star Clusters as Simple Stellar Populations
Integrated spectra have been obtained of 31 star clusters in theMagellanic Clouds (MC) and of four Galactic globular clusters. Thespectra cover the wavelength range 3500-4700 Å at a resolution of3.2 Å FWHM. The MC clusters primarily cover the age range fromless than 108 to about 3 Gyr and hence are well-suited to anempirical study of aging poststarburst stellar populations. Anage-dating method is presented that relies on two spectral absorptionfeature indices, Hδ/Fe I λ4045 and Ca II, as well as anindex measuring the strength of the Balmer discontinuity. We compare thebehavior of the spectral indices in the observed integrated spectra ofthe MC clusters with that of indices generated from theoreticalevolutionary synthesis models of varying age and metal abundance. Thesynthesis models are based on those of Worthey, when coupled with thecombination of an empirical library of stellar spectra by Jones for thecooler stars and synthetic spectra, generated from Kurucz modelatmospheres, for the hotter stars. Overall, we find good agreementbetween the ages of the MC clusters derived from our integrated spectra(and the evolutionary synthesis modelling of the spectral indices) andages derived from analyses of the cluster color-magnitude diagrams, asfound in the literature. Hence, the principal conclusion of this studyis that ages of young stellar populations can be reliably measured frommodelling of their integrated spectra.

Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud
We have compiled a pseudo-snapshot data set of two-colour observationsfrom the Hubble Space Telescope archive for a sample of 53 rich LMCclusters with ages of 106-1010 yr. We presentsurface brightness profiles for the entire sample, and derive structuralparameters for each cluster, including core radii, and luminosity andmass estimates. Because we expect the results presented here to form thebasis for several further projects, we describe in detail the datareduction and surface brightness profile construction processes, andcompare our results with those of previous ground-based studies. Thesurface brightness profiles show a large amount of detail, includingirregularities in the profiles of young clusters (such as bumps, dipsand sharp shoulders), and evidence for both double clusters andpost-core-collapse (PCC) clusters. In particular, we find power-lawprofiles in the inner regions of several candidate PCC clusters, withslopes of approximately -0.7, but showing considerable variation. Weestimate that 20 +/- 7 per cent of the old cluster population of theLarge Magellanic Cloud (LMC) has entered PCC evolution, a similarfraction to that for the Galactic globular cluster system. In addition,we examine the profile of R136 in detail and show that it is probablynot a PCC cluster. We also observe a trend in core radius with age thathas been discovered and discussed in several previous publications bydifferent authors. Our diagram has better resolution, however, andappears to show a bifurcation at several hundred Myr. We argue that thisobserved relationship reflects true physical evolution in LMC clusters,with some experiencing small-scale core expansion owing to mass loss,and others large-scale expansion owing to some unidentifiedcharacteristic or physical process.

A Large and Homogeneous Sample of CMDs of LMC Stellar Clusters
We present the photometric results of 21 stellar clusters of the LargeMagellanic Cloud. The WFPC2 images were retrieved from the HST archive.Simple stellar populations in a large spread of age are well representedin the sample of color-magnitude diagrams shown here.

Large Magellanic Cloud stellar clusters. I. 21 HST colour magnitude diagrams
We present WFPC2 photometry of 21 stellar clusters of the LargeMagellanic Cloud obtained on images retrieved from the Hubble SpaceTelescope archive. The derived colour magnitude diagrams (CMDs) arepresented and discussed. This database provides a sample of CMDsrepresenting, with reliable statistics, simple stellar populations witha large spread of age. The stars in the core of the clusters are allresolved and measured at least down to the completeness limit; themagnitudes of the main sequence terminations and of the red giant clumpare also evaluated for each cluster, together with the radius at halfmaximum of the star density. Based on observations made with theNASA/ESA Hubble Space Telescope, obtained from the data archive at theSpace Telescope Institute. STScI is operated by the association ofUniversities for Research in Astronomy, Inc. under the NASA contract NAS5-26555. Table 1 is only available in electronic form athttp://www.edpsciences.org

The Evolved Red Stellar Content of M32
Near-infrared images obtained with the Canada-France-Hawaii Telescope(CFHT) Adaptive Optics Bonnette (AOB) are used to investigate thestellar content of the Local Group compact elliptical galaxy M32.Observations of a field 2.3′ from the galaxy center reveal a largepopulation of asymptotic giant branch (AGB) stars, and comparisons withmodels indicate that these objects have an agelog(tGyr)<=9.3. The AGB population is very homogeneous,with Δlog(tGyr)<=+/-0.1 dex andΔ[M/H]<=+/-0.3 dex. The reddest AGB stars have J-K<=1.5, andit is suggested that the very red stars seen in earlier, less deep,surveys are the result of large photometric errors. The bolometric AGBluminosity function (LF) of this field is in excellent agreement withthat of the Galactic bulge. Based on the integrated brightness of AGBstars brighter than the red giant branch tip, which occurs at K=17.8, itis concluded that intermediate-age stars account for roughly 25% of thetotal K light and 10%+/-5% of the total mass in this field. A fieldclose to the center of M32 was also observed. The brightest stars withina few arcseconds of the nucleus have K=15.5, and the density of theseobjects is consistent with that predicted from the outer regions of thegalaxy after scaling according to surface brightness. Moreover, the Kluminosity function (LF) of bright sources between 20" and 30" of thenucleus is well matched by the LF of the outer regions of the galaxyafter accounting for differences in surface brightness and correctingfor the effects of crowding. It is concluded that the relative size ofthe intermediate-age component with respect to other populations doesnot change with radius over much of the galaxy. However, the integratedJ-K color and 2.3 μm CO index change with radius within a few tenthsof an arcsecond of the galaxy center, indicating that, contrary to whatmight be inferred from observations at visible wavelengths, theintegrated photometric properties of the central regions of M32 differfrom those of the surrounding galaxy.

Magellanic Cloud Periphery Carbon Stars. IV. The SMC
The kinematics of 150 carbon stars observed at moderate dispersion onthe periphery of the Small Magellanic Cloud are compared with themotions of neutral hydrogen and early-type stars in the intercloudregion. The distribution of radial velocities implies a configuration ofthese stars as a sheet inclined at 73°+/-4° to the plane of thesky. The near side, to the south, is dominated by a stellar component;to the north, the far side contains fewer carbon stars and is dominatedby the neutral gas. The upper velocity envelope of the stars is closelythe same as that of the gas. This configuration is shown to beconsistent with the known extension of the SMC along the line of sightand is attributed to a tidally induced disruption of the SMC thatoriginated in a close encounter with the LMC some 0.3 to 0.4 Gyr ago.The dearth of gas on the near side of the sheet is attributed toablation processes akin to those inferred in 1996 by Weiner &Williams to collisional excitation of the leading edges of MagellanicStream clouds. Comparison with the 1989 kinematic data of Hardy,Suntzeff, & Azzopardi and Maurice, Martin, & Bouchet and the1986 and 1988 data of Mathewson et al. leaves little doubt that forcesother than gravity play a role in the dynamics of the H I.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

The evolution of theV-Kcolours of single stellar populations
Models of evolutionary population synthesis of galaxies rely on theproperties of the so-called single stellar populations (SSP). In thispaper, we discuss how the integrated near-infrared colours, andespecially V-K, of SSPs evolve with age and metallicity. Some of theuncertainties associated with the properties of the underlying stellarmodels are thoroughly discussed. Our models include all the relevantstellar evolutionary phases, with particular attention being dedicatedto the asymptotic giant branch (AGB), which plays a fundamental role inthe evolution of the near-infrared part of the spectrum. First, wepresent the effects that different formulations for the mass-loss ratesproduce on the final remnant mass (i.e., on the initial-final massrelation), and hence on the AGB-termination luminosity and the relativecontribution of these stars to the integrated light. The results for theevolution of the V-K colour are very different depending on the choiceof the mass-loss prescription; the same is true also for the B-V colourin the case of low-metallicity SSPs. Secondly, we describe the changesoccurring in the integrated colours at the onset of the AGB and redgiant (RGB) branches. According to the classical formalism for the AGBevolution, the onset of this evolutionary phase is marked by a colourjump to the red, the amplitude of which is shown here to be highlydependent on the metallicity and mass-loss rates adopted in the models.We then consider the effect of the overluminosity with respect to thestandard core mass-luminosity relation that occurs in the most massiveAGB stars. Different simplified formulations for this effect are testedin the models; they cause a smoothing of the colour evolution in the agerange at which the AGB starts to develop, rather than a splitting of thecolour jump into two separate events. On the other hand, we find that atemporary red phase takes place ~1.5x10^8 yr after the RGB develops.Thanks to the transient nature of this feature, the onset of the RGB isprobably not able to cause marked features in the spectral evolution ofgalaxies. We then discuss the possible reasons for the transition of V-Kcolours (from ~1.5 to 3) that takes place in LMC clusters of SWB typeIV. A revision of the ages attributed to the single clusters revealsthat the transition may not be as fast as originally suggested. Thecomparison of the data with the models indicates that the transitionresults mainly from the development of the AGB. A gradual (or delayed)transition of the colours, as predicted by models which include theoverluminosity of the most massive AGB stars, seems to describe the databetter than the sudden colour jump predicted by classical models.

The relation between the initial and final masses of stars with different chemical compositions
We present the results of calculations for the relations between theinitial and final masses M_i-M_f of low- and moderate-mass stars forvarious initial heavy-element abundances Z. For Z = 0.02 and Z = 0.001,the resulting differences in the final masses for white dwarfs reach0.1M_solar for initial masses from 1.5 to 4M_solar. These differencesare primarily due to the dependence of the initial masses of thecarbon-oxygen cores of asymptotic giant branch stars on their chemicalcompositions. We study the roles of various assumptions about mass lossof stars in the final stages of their evolution. The population of whitedwarfs is modeled, and their mass distribution is obtained for variousassumptions about the initial chemical composition of the stars.

Ages and Metallicities of Star Clusters and Surrounding Fields in the Outer Disk of the Large Magellanic Cloud
We present Washington system CT_1 color-magnitude diagrams of 13 starclusters and their surrounding fields that lie in the outer parts of theLMC disk (r > 4 deg), as well as a comparison inner cluster. Thetotal area covered is large (2/3 deg^2), allowing us to study theclusters and their fields individually and in the context of the entireGalaxy. Ages are determined by means of the magnitude differencedeltaT_1 between the giant branch clump and the turnoff, whilemetallicities are derived from the location of the giant and subgiantbranches as compared with fiducial star clusters. This yields a uniquedata set in which ages and metallicities for both a significant sampleof clusters and their fields are determined homogeneously. We find thatin most cases the stellar population of each star cluster is quitesimilar to that of the field where it is embedded, sharing its mean ageand metallicity. The old population (t >= 10 Gyr) is detected in mostfields as a small concentration of stars on the horizontal branchblueward and faintward of the prominent clump. Three particular fieldspresent remarkable properties: (1) The thus-far unique cluster ESO121-SC03 at ~9 Gyr has a surrounding field that shares the sameproperties (which, in turn, is also unique, in that such a dominantold-field component is not present elsewhere-at least not significantlyin the fields as yet studied). (2) The field surrounding the far easternintermediate-age cluster OHSC 37 is noteworthy in that we do not detectany evidence of LMC stars: it is essentially a Galactic foregroundfield. We can thus detect the LMC field out to greater than 11 deg (thedeprojected distance of ESO 121-SC03), or ~11 kpc, but not to 13 deg(~13 kpc), despite the presence of clusters at this distance. (3) In thenorthern part of the LMC disk, the fields of SL 388 and SL 509 presentcolor-magnitude diagrams with a secondary clump ~0.45 mag fainter thanthe dominant intermediate-age clump, suggesting a stellar populationcomponent located behind the LMC disk at a distance comparable to thatof the SMC. Possibly we are witnessing a depth effect in the LMC, andthe size of the corresponding structure is comparable to the size of adwarf galaxy. The unusual spatial location of the cluster OHSC 37 andthe anomalous properties of the SL 388 and SL 509 fields might beexplained as debris from previous LMC interactions with the Galaxyand/or the SMC. The mean metallicity derived for the intermediate-ageouter disk clusters is <[Fe/H]> = -0.66, and for their surroundingfields <[Fe/H]> = -0.56. These values are significantly lower thanthose found by Olszewski et al. for a sample of clusters of similar agebut are in good agreement with several recent studies. A few clustersstand out in the age-metallicity relation, in that they areintermediate-age clusters at relatively low metallicity ([Fe/H] ~ -1).

A Search for Old Star Clusters in the Large Magellanic Cloud
Abstract image available at:http://adsabs.harvard.edu/abs/1997AJ....114.1920G

Carbon stars in LMC clusters revisited.
Abstract image available at:http://adsabs.harvard.edu/abs/1996A&A...316L...1M

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

High-luminosity carbon stars in the early asymptotic giant branch phase
There are high-luminosity carbon stars in the Large Magellanic Cloud(LMC) whose effective temperatures are well above those of ordinaryN-type stars. To elucidate the evolutionary stage of these stars, thepopulations of carbon stars formed as a result of both single-starevolution and mass transfer in close binary systems have beentheoretically modeled by the method of synthetic evolution. It is shownthat high-luminosity carbon stars in the LMC with effective temperaturesgreater than those of most of the LMC stars are in the early asymptoticgiant branch (AGB) phase, while most of the carbon stars withsignificantly lower effective temperatures are in the phase ofhelium-shell flashes. This conclusion is confirmed by the observation ofcarbon and S-type LMC stars in clusters where these stars are clearlyseparated into two groups according to their effective temperature. Itappears that such stars cannot be present in the Galaxy because of largeheavy-element abundances, intermediate-mass stars in the early AGB phasedo not reach high luminosities.

Moment analysis applied to LMC star clusters
Statistical moment-based ellipse fitting is performed on observations ofLarge Magellanic Cloud clusters, confirming that trends are evident intheir position angles and ellipticities, as had been reported in theliterature. Artificial cluster images with known parameters aregenerated, and subjected to the same analysis techniques, revealingapparent trends caused by stochastic processes. Caution should thereforebe exercised in the interpretation of observational trends in young LMCclusters.

Spectroscopy of giants in LMC clusters. II - Kinematics of the cluster sample
Velocities for 83 star clusters in the LMC are analyzed, based onindividual stellar velocities measured at the Calcium triplet. One-halfof the clusters are objects in the outer parts of the LMC which had noprevious velocity determinations. Published velocities for intermediateand old clusters are shown to have had systematic errors. These newvelocities with various rotation curve analyses of the LMC, and testaspects of the twisted disk model proposed by Freeman et al. (1983).When the transverse motion of the LMC is taken into account, a singlerotating disk solution fits the old and intermediate-aged clusters andother tracers (i.e., there is no need for an additional 'tilted disk'system).

The evolution of carbon stars in the Magellanic Clouds
This study presents JHK photometric data for over 100 field stars in theSMC and for 10 in the Large Cloud together with spectroscopic resultsfor about half of them. In the Small Cloud carbon stars were found athigher temperatures and lower luminosities than previously observed. Thefaintest are below the top of the red giant branch. The medium- andlow-luminosity C stars in the M-C transition zone have a low C2 content.At these luminosities, most of the J-type stars are found close to theC2-poor stars in the HR diagram. Their C2 content is about as high as inthe coolest, most evolved C stars. The present observations of carbonstars in the SMC show that they cover a range in M(bo) from -3 to 5.9mag. The transitions from M to C via S appear to occur in both Clouds ata rather well-defined range in M(bol) for SWB and classes IV and V.

Spectroscopy of giants in LMC clusters. I - Velocities, abundances, and the age-metallicity relation
Velocities and equivalent widths are presented for a large sample of LMCclusters. The calcium abundance is found to be a sensitive abundanceindicator over a very wide range of (Fe/H) between 0.0 and -2.2. Theage-metallicity relation is constructed for the inner and outer parts ofthe LMC. This relationsip can be characterized by a simple one-zoneenrichment model. The abundances for the inner and outer clusters at anage of 2 Gyr are nearly identical, so that little radial abundancegradient is evident in the cluster system.

The cluster system of the Large Magellanic Cloud
A new catalog of clusters in the Large Magellanic Cloud has beenconstructed from searches of the IIIa-J component of the ESO/SERCSouthern Sky Atlas. The catalog contains coordinate and diametermeasurements of 1762 clusters in a 25 deg x 25 deg area of sky centeredon the LMC, but excluding the very crowded 3.5 sq deg region around theBar. The distribution of these clusters appears as two superimposedelliptical systems. The higher density inner system extends over about 8deg; the lower density outer system can be represented by a 13 deg x 10deg disk inclined at 42 deg to the line of sight. There are suggestionsof two weak 'arms' in the latter.

The asymptotic giant branch of Magellanic Cloud clusters
The present search for carbon and M-type asymptotic giant branch (AGB)stars in the 39 clusters of the Magellanic Clouds has yieldedidentifications and near-IR photometry for about 400 such stars. TheSearle et al. (1980) cluster-age-related classification scheme is abasic element of the present analysis of these data. In a C-M diagram,the cluster M stars shift steadily redward as one proceeds from clustersof SWB type I to VI, due to the increasing age of the clusters along thesequence. Luminous carbon stars are present only in SWB IV-VI clusters,and are easily distinguished from M stars by their color and luminosity.

The Magellanic Clouds - Their evolution, structure and composition
Recent data related to the history of the Magellanic Clouds as galaxiesare described, and attempts to determine accurate distances to theMagellanic Clouds are discussed, with special attention given to thegeometry of the Magellanic Clouds and different methods of distancedeterminations. Consideration is given to the various star generationspresent in the Clouds (i.e., the oldest generation, of greater than 10Gyr; the intermediate-age generations, between 7 and 0.2 Gyr, and theyoungest generation, the formation of which started only about 50 Myrago) and to their occurrences in the LMC and SMC populations, as well asto the interstellar medium in the Magellanic Clouds. The structure ofthe Magellanic System, which comprises the Magellanic Clouds, theIntercloud Region, and the Magellanic Stream is described, withparticualr consideration given to the complex structure of the LMC andSMC and the kinematics of their populations.

Observed dynamical parameters of the disk clusters of the Large Magellanic Cloud. II
The structural parameters and density profiles for 28 LMC globularclusters (located within 5 kpc from the rotation center) have beenderived by means of star counts. The clusters were measured on plates offour different colors (U, J, V, I) taken with the 1.2-m UK Schmidttelescope. The tidal radii are found to be within 40-65 pc and theirdynamical masses from 10,000 to 100,000 solar masses. Comparing thedynamical parameters of these clusters with those studied by Kontizas etal. (1987), it is found that the most extended and massive clusters ofthis galaxy are in the innermost area, at distances not exceeding 3 kpcfrom the rotation center; the distances have been corrected for theinclination of the LMC.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Mensa
Right ascension:06h10m42.00s
Declination:-71°31'42.0"
Apparent magnitude:99.9

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 2213

→ Request more catalogs and designations from VizieR