Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 361


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Star-forming Region NGC 346 in the Small Magellanic Cloud with Hubble Space Telescope ACS Observations. II. Photometric Study of the Intermediate-Age Star Cluster BS 90
We present the results of our investigation of the intermediate-age starcluster BS 90, located in the vicinity of the H II region N66 in theSMC, observed with HST ACS. The high-resolution data provide a uniqueopportunity for a very detailed photometric study performed on one ofthe rare intermediate-age rich SMC clusters. The complete set ofobservations is centered on the association NGC 346 and contains almost100,000 stars down to V~=28 mag. In this study we focus on the northernpart of the region, which covers almost the whole stellar content of BS90. We construct its stellar surface density profile and derivestructural parameters. Isochrone fits on the CMD of the cluster resultsin an age of about 4.5 Gyr. The luminosity function is constructed andthe present-day mass function of BS 90 has been obtained using themass-luminosity relation, derived from the isochrone models. We found aslope between -1.30 and -0.95, comparable to or somewhat shallower thana typical Salpeter IMF. Examination of the radial dependence of the massfunction shows a steeper slope at larger radial distances, indicatingmass segregation in the cluster. The derived half-mass relaxation timeof 0.95 Gyr suggests that the cluster is mass segregated due to itsdynamical evolution. From the isochrone model fits we derive ametallicity for BS 90 of [Fe/H]=-0.72, which adds an important point tothe age-metallicity relation of the SMC. We discuss our findings on thisrelation in comparison to other SMC clusters.Research supported by the Deutsche Forschungsgemeinschaft (GermanResearch Foundation).

The TP-AGB phase. Lifetimes from C and M star counts in Magellanic Cloud clusters
Using available data for C and M giants with M_bol<-3.6 in MagellanicCloud clusters, we derive limits to the lifetimes for the correspondingevolutionary phases, as a function of stellar mass. The C-star phase isfound to have a duration between 2 and 3 Myr for stars in the mass rangefrom ~1.5 to 2.8 M_ȯ. There is also an indication that the peak ofC-star lifetime shifts to lower masses (from slightly above to slightlybelow 2 Mȯ) as we move from LMC to SMC metallicities.The M-giant lifetimes also peak at ~2 Mȯ in the LMC,with a maximum value of about 4 Myr, whereas in the SMC their lifetimesappear much shorter, but, actually, they are poorly constrained by thedata. These numbers constitute useful constraints to theoretical modelsof the TP-AGB phase. We show that several models in the literatureunderestimate the duration of the C-star phase at LMC metallicities.

A Database of 2MASS Near-Infrared Colors of Magellanic Cloud Star Clusters
The (rest-frame) near-IR domain contains important stellar populationdiagnostics and is often used to estimate masses of galaxies at low, aswell as high, redshifts. However, many stellar population models arestill relatively poorly calibrated in this part of the spectrum. Toallow an improvement of this calibration we present a new database ofintegrated near-IR JHKs magnitudes for 75 star clusters inthe Magellanic Clouds, using the Two Micron All Sky Survey (2MASS). Themajority of the clusters in our sample have robust age and metallicityestimates from color-magnitude diagrams available in the literature, andpopulate a range of ages from 10 Myr to 15 Gyr and a range in [Fe/H]from -2.17 to +0.01 dex. A comparison with matched star clusters in the2MASS Extended Source Catalog (XSC) reveals that the XSC only provides agood fit to the unresolved component of the cluster stellar population.We also compare our results with the often-cited single-channel JHKphotometry of Persson and coworkers and find significant differences,especially for their 30" diameter apertures, up to ~2.5 mag in the Kband, more than 1 mag in J-K, and up to 0.5 mag in H-K. Usingsimulations to center apertures based on maximum light throughput (asperformed by Persson et al.), we show that these differences can beattributed to near-IR-bright cluster stars (e.g., carbon stars) locatedaway from the true center of the star clusters. The wide age andmetallicity coverage of our integrated JHKs photometry sampleconstitute a fundamental data set for testing population synthesis modelpredictions and for direct comparison with near-IR observations ofdistant stellar populations.

Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters
We present a database of structural and dynamical properties for 153spatially resolved star clusters in the Milky Way, the Large and SmallMagellanic Clouds, and the Fornax dwarf spheroidal. This databasecomplements and extends others in the literature, such as those ofHarris and Mackey & Gilmore. Our cluster sample comprises 50 ``youngmassive clusters'' in the LMC and SMC, and 103 old globular clustersbetween the four galaxies. The parameters we list include central andhalf-light-averaged surface brightnesses and mass densities; core andeffective radii; central potentials, concentration parameters, and tidalradii; predicted central velocity dispersions and escape velocities;total luminosities, masses, and binding energies; central phase-spacedensities; half-mass relaxation times; and ``κ-space'' parameters.We use publicly available population-synthesis models to computestellar-population properties (intrinsic B-V colors, reddenings, andV-band mass-to-light ratios) for the same 153 clusters plus another 63globulars in the Milky Way. We also take velocity-dispersionmeasurements from the literature for a subset of 57 (mostly old)clusters to derive dynamical mass-to-light ratios for them, showing thatthese compare very well to the population-synthesis predictions. Thecombined data set is intended to serve as the basis for futureinvestigations of structural correlations and the fundamental plane ofmassive star clusters, including especially comparisons between thesystemic properties of young and old clusters.The structural and dynamical parameters are derived from fitting threedifferent models-the modified isothermal sphere of King; an alternatemodified isothermal sphere based on the ad hoc stellar distributionfunction of Wilson; and asymptotic power-law models withconstant-density cores-to the surface-brightness profile of eachcluster. Surface-brightness data for the LMC, SMC, and Fornax clustersare based in large part on the work of Mackey & Gilmore, but includesignificant supplementary data culled from the literature and importantcorrections to Mackey & Gilmore's V-band magnitude scale. Theprofiles of Galactic globular clusters are taken from Trager et al. Weaddress the question of which model fits each cluster best, finding inthe majority of cases that the Wilson models-which are spatially moreextended than King models but still include a finite, ``tidal'' cutoffin density-fit clusters of any age, in any galaxy, as well as or betterthan King models. Untruncated, asymptotic power laws often fit about aswell as Wilson models but can be significantly worse. We argue that theextended halos known to characterize many Magellanic Cloud clusters maybe examples of the generic envelope structure of self-gravitating starclusters, not just transient features associated strictly with youngage.

The Star Clusters of the Small Magellanic Cloud: Age Distribution
We present age measurements for 195 star clusters in the SmallMagellanic Cloud based on comparison of integrated colors measured fromthe Magellanic Clouds Photometric Survey with models of simple stellarpopulations. We find that the modeled nonuniform changes of clustercolors with age can lead to spurious age peaks in the cluster agedistribution; that the observed numbers of clusters with age t declinessmoothly as t-2.1 that for an assumed initial cluster massfunction scaling as M-2, the dependence of the clusterdisruption time on mass is proportional to M0.48; thatdespite the apparent abundance of young clusters, the dominant epoch ofcluster formation was the initial one; and that there are significantdifferences in the spatial distribution of clusters of different ages.Because of limited precision in our age measurements, we cannot addressthe question of detailed correspondence between the cluster age functionand the field star formation history. However, this sample provides aninitial guide as to which clusters to target in more detailed studies ofspecific age intervals.

Comparing the properties of local globular cluster systems: implications for the formation of the Galactic halo
We investigate the hypothesis that some fraction of the globularclusters presently observed in the Galactic halo formed in externaldwarf galaxies. This is done by means of a detailed comparison betweenthe `old halo', `young halo' and `bulge/disc' subsystems defined by Zinnand the globular clusters in the Large Magellanic Cloud, SmallMagellanic Cloud, and Fornax and Sagittarius dwarf spheroidal galaxies.We first use high-quality photometry from Hubble Space Telescope imagesto derive a complete set of uniform measurements of horizontal branch(HB) morphology in the external clusters. We also compile structural andmetallicity measurements for these objects and update the data base ofsuch measurements for the Galactic globular clusters, including newcalculations of HB morphology for 11 objects. Using these data togetherwith recent measurements of globular cluster kinematics and ages weexamine the characteristics of the three Galactic cluster subsystems.Each is quite distinct in terms of their spatial and age distributions,age-metallicity relationships, and typical orbital parameters, althoughwe observe some old halo clusters with ages and orbits more similar tothose of young halo objects. In addition, almost all of the Galacticglobular clusters with large core radii fall into the young halosubsystem, while the old halo and bulge/disc ensembles are characterizedby compact clusters. We demonstrate that the majority of the externalglobular clusters are essentially indistinguishable from the Galacticyoung halo objects in terms of HB morphology, but ~20-30 per cent ofexternal clusters have HB morphologies most similar to the Galactic oldhalo clusters. We further show that the external clusters have adistribution of core radii which very closely matches that for the younghalo objects. The old halo distribution of core radii can be very wellrepresented by a composite distribution formed from ~83-85 per cent ofobjects with structures typical of bulge/disc clusters, and ~15-17 percent of objects with structures typical of external clusters. Takentogether our results fully support the accretion hypothesis. We concludethat all 30 young halo clusters and 15-17 per cent of the old haloclusters (10-12 objects) are of external origin. Based on cluster numbercounts, we estimate that the Galaxy may have experienced approximatelyseven merger events with cluster-bearing dwarf-spheroidal-type galaxiesduring its lifetime, building up ~45-50 per cent of the mass of theGalactic stellar halo. Finally, we identify a number of old halo objectswhich have properties characteristic of accreted clusters. Several ofthe clusters associated with the recently proposed dwarf galaxy in CanisMajor fall into this category.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Cluster Mass Functions in the Large and Small Magellanic Clouds: Fading and Size-of-Sample Effects
The properties of ~939 star clusters in the Large and Small MagellanicClouds were determined from ground-based CCD images in UBVR passbands.The areal coverage was extensive, corresponding to 11.0 kpc2in the LMC and 8.3 kpc2 in the SMC. After corrections forreddening, the colors and magnitudes of the clusters were converted toages and masses, and the resulting mass distributions were searched forthe effects of fading, evaporation, and size-of-sample bias. The datashow a clear signature of cluster fading below the detection threshold.The initial cluster mass function (ICMF) was determined by fitting themass and age distributions with cluster population models. These modelssuggest a new method to determine the ICMF that is nearly independent offading or disruption and is based on the slope of a correlation betweenage and the maximum cluster mass in equally spaced intervals of log age.For a nearly uniform star formation rate, this correlation has a slopeequal to 1/(α-1) for an ICMF of dn(M)/dM~M-α. Wedetermine that α is between 2 and 2.4 for the LMC and SMC usingthis method plus another method in which models are fitted to the massdistribution integrated over age and to the age distribution integratedover mass. The maximum mass method also suggests that the clusterformation rate in the LMC age gap between 3 and 13 Gyr is about a factorof 10 below that in the period from 0.1 to 1 Gyr. The oldest clusterscorrespond in age and mass to halo globular clusters in the Milky Way.They do not fit the trends for lower mass clusters but appear to be aseparate population that either had a very high star formation rate andbecame depleted by evaporation or formed with only high masses.

The faint Cepheids of the Small Magellanic Cloud: An evolutionary selection effect?
Two problems concerning the faintest Small Magellanic Cloud (SMC)Cepheids are addressed. On the one hand evolutionary tracks fail tocross the Cepheid Instability Strip for the highest magnitudes (i.e.I-mag ~ 17) where Cepheids are observed; mass-luminosity relations(ML) obtained from evolutionary tracks disagree with mass-luminosityrelations derived from observations. We find that the above failuresconcern models built with standard input physics as well as withnon-standard ones. The present work suggests that towards highestmagnitudes, Cepheids stars undergo a selection effect caused byevolution: only the most metal poor stars cross the Instability Stripduring the ``blue loop'' phase and are therefore the only ones that canbe observed at low luminosity. This solution enables us to reproduce theshape of the lower part of the Instability Strip and improves theagreement between observed and theoretical ML-relations. Some issues arediscussed, among them Beat Cepheid results that argue strongly in favorof our hypothesis.

Surface brightness profiles and structural parameters for 10 rich stellar clusters in the Small Magellanic Cloud
As a follow-up to our recent study of a large sample of Large MagellanicCloud (LMC) clusters, we have conducted a similar study of thestructures of 10 Small Magellanic Cloud (SMC) clusters, using archivalHubble Space Telescope snapshot data. We present surface brightnessprofiles for each cluster and derive structural parameters, includingcore radii and luminosity and mass estimates, using exactly the sameprocedure as for the LMC sample. Because of the small sample size, theSMC results are not as detailed as for the larger LMC sample. We do notobserve any post-core-collapse clusters (although we did not expect to),and there is little evidence for any double clusters in our sample. Nonethe less, despite the small sample size, we show for the first time thatthe SMC clusters follow almost exactly the same trend in core radiuswith age observed for the LMC system, including the apparent bifurcationat several hundred Myr. This further strengthens our argument that thisrelationship represents true physical evolution in these clusters, withsome developing significantly expanded cores due to an as yetunidentified physical process. Additional data, both observational andfrom N-body simulations, are still required to clarify many issues.

An Upper Limit to the Age of the Galactic Bar
Using data from the Two Micron All Sky Survey, we identify a populationof infrared carbon stars with J-KS>=2 in the Milky Way.These stars are shown to trace the stellar bar previously identified inIR and optical surveys. The properties of C stars strongly suggest thatthey are of intermediate age. We conclude that the bar is likely to haveformed more recently than 3 Gyr ago and must be younger than 6 Gyr.Implications and further tests of this conclusion are briefly discussed.

Constraining the LMC cluster age gap: Washington photometry of NGC 2155 and SL 896 (LW 480)
We carried out Washington system photometry of the intermediate-ageLarge Magellanic Cloud (LMC) star clusters NGC2155 and SL896 (LW480). Wederive ages and metallicities from the T1 versusC-T1 colour-magnitude diagrams (CMDs). For the first time anage has been obtained for SL896, 2.3+/-0.5Gyr. For NGC2155 we derive3.6+/-0.7Gyr. The two clusters basically define the lower age limit ofthe LMC age gap. In particular, NGC2155 is confirmed as the oldestintermediate-age LMC cluster so far studied. The derived metallicitiesare [Fe/H]=-0.9+/-0.2 and -0.6+/-0.2 for NGC2155 and SL896,respectively. We also studied the CMDs of the surrounding fields, whichhave a dominant turn-off comparable to that of the clusters themselves,and similar metallicity, showing that one is dealing with anintermediate-age disc where clusters and field stars have the sameorigin. We inserted the present clusters in the LMC and Small MagellanicCloud (SMC) age-metallicity relations, using a set of homogeneousdeterminations with the same method as in our previous studies, nowtotalling 15 LMC clusters and four SMC clusters, together with someadditional values from the literature. The LMC and SMC age-metallicityrelations appear to be remarkably complementary, since the SMC wasactively star-forming during the LMC quiescent age gap epoch.

The Star Cluster Systems of the Magellanic Clouds
The characteristics of the cluster systems of the Magellanic Clouds, asinferred from integrated properties, are compared with those fromindividual cluster studies and from the field population. The agreementis generally satisfactory though in the case of the LMC, the lack ofclusters older than ˜3 Gyr is not reflected in the fieldpopulation. The possible origin(s) for this cluster ``age-gap'' arediscussed. The SMC cluster age-metallicity relation is also presentedand discussed.

Ages and metallicities of five intermediate-age star clusters projected towards the Small Magellanic Cloud
Colour-magnitude diagrams are presented for the first time for L32, L38,K28 (L43), K44 (L68) and L116, which are clusters projected on to theouter parts of the Small Magellanic Cloud (SMC). The photometry wascarried out in the Washington system C and T1 filters,allowing the determination of ages by means of the magnitude differencebetween the red giant clump and the main-sequence turn-off, andmetallicities from the red giant branch locus. The clusters have ages inthe range 2-6Gyr, and metallicities in the range-1.65<[Fe/H]<-1.10, increasing the sample of intermediate-ageclusters in the SMC. L116, the outermost cluster projected on to theSMC, is a foreground cluster, and somewhat closer to us than the LargeMagellanic Cloud. Our results, combined with those for other clusters inthe literature, show epochs of sudden chemical enrichment in theage-metallicity plane, which favour a bursting star formation history asopposed to a continuous one for the SMC.

The Line-of-Sight Depth of Populous Clusters in the Small Magellanic Cloud
We present an analysis of age, metal abundance, and positional data onpopulous clusters in the Small Magellanic Cloud (SMC) with the ultimateaim of determining the line-of-sight (LOS) depth of the SMC by usingthese clusters as proxies. Our data set contains 12 objects and islimited to clusters with the highest-quality data for which the ages andabundances are best known and can be placed on an internally consistentscale. We have analyzed the variation of the clusters' properties withposition on the sky and with line-of-sight depth. Based on thisanalysis, we draw the following conclusions: (1) The observational dataindicate that the eastern side of the SMC (facing the Large MagellanicCloud) contains younger and more metal-rich clusters as compared withthe western side. This is not a strong correlation because our data setof clusters is necessarily limited, but it is suggestive and warrantsfurther study. (2) Depending on how the reddening is computed to ourclusters, we find a mean distance modulus that ranges from(m-M)0=18.71+/-0.06 to 18.82+/-0.05. (3) The intrinsic +/-1σ LOS depth of the SMC populous clusters in our study is between~6 and ~12 kpc, depending primarily on whether we adopt the Burstein& Heiles reddenings or those from Schlegel et al. (4) Viewing theSMC as a triaxial galaxy with declination, right ascension, and LOSdepth as the three axes, we find axial ratios of approximately 1:2:4.Taken together, these conclusions largely agree with those of previousinvestigators and underscore the utility of populous star clusters asprobes of the structure of the Small Magellanic Cloud.

The elliptical galaxy formerly known as the Local Group: merging the globular cluster systems
Prompted by a new catalogue of M31 globular clusters, we have collectedtogether individual metallicity values for globular clusters in theLocal Group. Although we briefly describe the globular cluster systemsof the individual Local Group galaxies, the main thrust of our paper isto examine the collective properties. In this way we are simulating thedissipationless merger of the Local Group, into presumably an ellipticalgalaxy. Such a merger is dominated by the Milky Way and M31, whichappear to be fairly typical examples of globular cluster systems ofspiral galaxies. The Local Group `Elliptical' has about 700 +/- 125globular clusters, with a luminosity function resembling the `universal'one. The metallicity distribution has peaks at [Fe/H] ~ -1.55 and -0.64with a metal-poor to metal-rich ratio of 2.5:1. The specific frequencyof the Local Group Elliptical is initially about 1 but rises to about 3,when the young stellar populations fade and the galaxy resembles an oldelliptical. The metallicity distribution and stellar populationcorrected specific frequency are similar to that of some known earlytype galaxies. Based on our results, we briefly speculate on the originof globular cluster systems in galaxies.

Two Groups of Nearly Coeval Star Clusters in the Small Magellanic Cloud
We report new photometry and main-sequence turnoff ages for sevenpopulous star clusters in the SMC with MV<-6 and age greaterthan 1 Gyr, using the Wide Field Planetary Camera 2 on board the HubbleSpace Telescope. In contrast to the accepted picture, these clustersappear to have formed in two brief intervals, the oldest 8+/-2 Gyr agoand one during a more recent burst 2+/-0.5 Gyr ago. When the ridgelinesof the four clusters (NGC 339, 361, and 416 and Kron 3) in the 8 Gyrburst are aligned, the dispersion in turnoff luminosities is less than0.2 mag, corresponding to a maximum age spread of +/-0.7 Gyr. When theridgelines of three clusters (NGC 152, 411, and 419) in the 2 Gyr burstare aligned, the maximum dispersion of 0.2 mag in turnoff luminositycorresponds to a permitted age spread of +/-0.2 Gyr. Within each groupof clusters, the entire cluster loci (including red giant branches andclumps) are nearly identical, consistent with a very small spread inmetallicity and age. In contrast to the wide dispersion in agespreviously reported in the literature, our sample with more precisephotometry and age measurements supports a burst-punctuated rather thana continuous cluster formation history for the oldest SMC clusters.

On the Sensitivity of the Cepheid Period-Luminosity Relation to Variations of Metallicity
Predictions are made of the effect of variations in the [Fe/H]metallicity on the zero point of the Cepheid period-luminosity relationin bolometric, B, V, and I magnitudes. Theoretical evolutionary tracksin the H-R diagram, computed by three independent groups at Geneva,Padua, and Basel, are combined with the positions of the blue and rededges of the instability strip in the relevant H-R diagrams to give thepredicted P-L relations for [Fe/H] metallicities of 0.0, -0.4, -0.7,-1.3, and -1.7. The predictions are based on the pulsation equation,P(M,L,T_e,Z,Y), calculated at the points where the tracks of a givenmass for each metallicity intersect the instability strip in the H-Rdiagrams. New model atmospheres and synthetic spectra are computedgiving sets of grids of the bolometric corrections and B-V, V-R, R-I,and V-I colors for temperatures between 7500 and 5000 K, gravitiesbetween log g=3.0 and log g=0.75, and metallicities between [Fe/H]=0.0and [Fe/H]=-1.7. Interpolation in the grids at the relevanttemperatures, gravities, and metallicities of the Cepheid instabilitystrip give theoretical P-L relations on the Cape Cousins BVI photometricsystem at the blue and red edges of the strip. The metallicitydependence of the P-L relations, read at P=10 days, are dM/d[Fe/H]=0.00mag dex^-1 in M(bol), +0.03 mag dex^-1 in B, -0.08 mag dex^-1 in V, and-0.10 mag dex^-1 in I in the sense that lower metallicities meanbrighter magnitudes in B and fainter ones in V and I. Similardependencies are found at P=31.6 days. Confirmation that the zero pointsof the Cepheid P-L relations are not steeper functions of [Fe/H] thanthe theoretical values derived here is found by comparing the distancemoduli of the LMC, the SMC, and IC 1613 based on the P-L relation forGalactic Cepheids (<[Fe/H]>=0) with the distance moduli determinedfor these galaxies using RR Lyrae variables with the steep absolutemagnitude-metallicity calibration of M_V(RR)=0.30[Fe/H]+0.94. Applyingthis bright calibration, based on the Oosterhoff-Arp-Preston (OAP)metallicity effect, to the RR Lyrae variables in the LMC, the SMC, andIC 1613 gives individual distance moduli that agree to within 0.10 magwith the Cepheid distance moduli for [Fe/H]=0 for each galaxy,confirming that no metallicity dependence of the Cepheid P-L relationcan be detected at this level with the present observational data if thebright RR Lyrae M_V ([Fe/H]) calibration is used. Using the statedcalibrations with the Cepheid data from the literature gives thedistance modulusof the LMC to be (m-M)_0=18.57. The modulus for the SMC,corrected for the mild metallicity effect derived here, reconciles thedeviant individual B, V, and I moduli to within +/-0.01 mag,giving(m-M)_0=18.94 for the SMC.

The Age-dependent Luminosities of the Red Giant Branch Bump, Asymptotic Giant Branch Bump, and Horizontal Branch Red Clump
Color-magnitude diagrams of globular clusters usually exhibit aprominent horizontal branch (HB) and may also show features such as thered giant branch (RGB) bump and the asymptotic giant branch (AGB) bump.Stellar evolution theory predicts that the luminosities of thesefeatures will depend on the metallicity and age of the cluster. Wecalculate theoretical lines of 2-12 Gyr constant age RGB bumps and AGBbumps in the DeltaV^HB_Bump-[Fe/H] diagram, which shows the brightnessdifference between the bump and the HB as a function of metallicity. Inorder to test the predictions, we identify giant branch bumps in newHubble Space Telescope color-magnitude diagrams for eight SMC clusters.First, we conclude that the SMC cluster bumps are RGB bumps. The datafor clusters younger than ~6 Gyr are in fair agreement with ourpredictions for the relative age-dependent luminosities of the HB andRGB bump. The DeltaV^HB_Bump data for clusters older than ~6 Gyrdemonstrate a less satisfactory agreement with our calculations. Weconclude that ~6 Gyr is the lower bound to the age of clusters for whichthe Galactic globular cluster, age-independent DeltaV^HB_Bump-[Fe/H]calibration is valid. Application of the DeltaV^HB_Bump-[Fe/H] diagramto stellar population studies is discussed.

WFPC2 Observations of Star Clusters in the Magellanic Clouds. II. The Oldest Star Clusters in the Small Magellanic Cloud
We present our analysis of archival Hubble Space Telescope Wide FieldPlanetary Camera 2 (WFPC2) observations in F450W (~B) and F555W (~V) ofthe intermediate-age populous star clusters NGC 121, NGC 339, NGC 361,NGC 416, and Kron 3 in the Small Magellanic Cloud. We use publishedphotometry of two other SMC populous star clusters, Lindsay 1 andLindsay 113, to investigate the age sequence of these seven starclusters in order to improve our understanding of the formationchronology of the SMC. We analyzed the V versus B-V and M_V versus(B-V)_0 color-magnitude diagrams of these populous Small MagellanicCloud star clusters using a variety of techniques and determined theirages, metallicities, and reddenings. These new data enable us to improvethe age-metallicity relation of star clusters in the Small MagellanicCloud. In particular, we find that a closed-box continuous starformation model does not reproduce the age-metallicity relationadequately. However, a theoretical model punctuated by bursts of starformation is in better agreement with the observational data presentedherein.

Ca II Triplet Spectroscopy of Giants in Small Magellanic Cloud Star Clusters: Abundances, Velocities, and the Age-Metallicity Relation
We have obtained spectra at the Ca ii triplet of individual red giantsin seven Small Magellanic Cloud (SMC) star clusters whose ages rangefrom ~4 to 12 Gyr. The spectra have been used to determine meanabundances for six of the star clusters to a typical precision of 0.12dex. When combined with existing data for other objects, the resultingSMC age-metallicity relation is generally consistent with that for asimple model of chemical evolution, scaled to the present-day SMC meanabundance and gas mass fraction. Two of the clusters (Lindsay 113 andNGC 339), however, have abundances that are ~0.5 dex lower than thatexpected from the mean age-metallicity relation. It is suggested thatthe formation of these clusters, which have ages of ~5 Gyr, may haveinvolved the infall of unenriched gas, perhaps from the MagellanicStream. The spectra also yield radial velocities for the seven clusters.The resulting velocity dispersion is 16 +/- 4 km s^-1, consistent withthose of the SMC planetary nebula and carbon star populations.

Mid-infrared properties of globular clusters using the IRAS data base
We present an analysis of the mid-IR properties of 18 globular clusters(GCs) [15 in the Galaxy and three in the Large Magellanic Cloud (LMC)]using the IRAS photometric data at 12 and 25 mum. Eight of the nineGalactic GCs with central escape velocities greater than 50 km s^-1 haveIRAS sources within a radius of 60 arcsec from the centre, in agreementwith the expectation that interstellar gas and dust should indeed bepresent in the central regions of the most massive clusters owing tomass-loss processes occurring in the late stages of the stellarevolution. No other significant correlation is found between IRAS sourceincidence and any intrinsic GC parameters. Warm dust (T~300K) isdetectable mostly around unresolved giant stars, but in three massiveGCs it is also present as diffuse emission. However, most of the dustmight be cold (T<50K) and it was thus notdetected by IRAS because of its limited sensitivity at 60 and 100 mum.The inferred mass-loss rates and statistical considerations arecompatible with a non-steady mass-loss process with several episodes ofejection lasting a few times 10^5 yr.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. I. Small Magellanic Cloud and Bridge
A survey of extended objects in the Magellanic System was carried out onthe ESO/SERC R and J Sky Survey Atlases. The present work is dedicatedto the Small Magellanic Cloud and to the inter-Magellanic Cloud region("Bridge") totaling 1188 objects, of which 554 are classified as starclusters, 343 are emissionless associations, and 291 are related toemission nebulae. The survey includes cross-identifications amongcatalogs, and we present 284 new objects. We provide accurate positions,classification, homogeneous sizes, and position angles, as well asinformation on cluster pairs and hierarchical relation for superimposedobjects. Two clumps of extended objects in the Bridge and one at theSmall Magellanic Cloud wing tip might be currently forming dwarfspheroidal galaxies.

On the Discrepancy between the Cepheid and RR Lyrae Distance Scales
Abstract image available at:http://adsabs.harvard.edu/abs/1995ApJ...446...39V

Variable stars in the northeast arm/inner halo region of the Small Magellanic Cloud
Variable stars in a 1 x 1,3 deg region near the Northeast Arm of the SMCwere photographically investigated. Large numbers of Cepheid variablestars were discovered in the NGC 361 field which were too faint to befound in previous variable star surveys. Cepheids with periods smallerthan three days fall along one of two different P-L relations: thosewith lower amplitude, more symmetric light curves occupy the brightersequences, while those with larger amplitudes and more asymmetric lightcurves fall along the fainter sequences. The slope of the log P-Brelation derived from the fundamental mode Cepheids in the NGC 361 fieldis steeper than found in some prior studies of LMC and SMC Cepheids.Whereas RR Lyrae variables are distributed roughly evenly across the NGC361 field, longer-period Cepheids are concentrated to the southernportion of the field, nearer to the main part of the Northeast Arm.

The evolution of carbon stars in the Magellanic Clouds
This study presents JHK photometric data for over 100 field stars in theSMC and for 10 in the Large Cloud together with spectroscopic resultsfor about half of them. In the Small Cloud carbon stars were found athigher temperatures and lower luminosities than previously observed. Thefaintest are below the top of the red giant branch. The medium- andlow-luminosity C stars in the M-C transition zone have a low C2 content.At these luminosities, most of the J-type stars are found close to theC2-poor stars in the HR diagram. Their C2 content is about as high as inthe coolest, most evolved C stars. The present observations of carbonstars in the SMC show that they cover a range in M(bo) from -3 to 5.9mag. The transitions from M to C via S appear to occur in both Clouds ata rather well-defined range in M(bol) for SWB and classes IV and V.

Accurate positions for SMC clusters
Positions of 203 SMC clusters accurate to + or - 5 arcsec are reported.The astrometry method used is briefly described. Plans for futureMagellanic Cloud cluster astrometry are summarized.

The morphology of star clusters in the SMC
The projected ellipticities of 34 populous SMC star clusters have beenderived by means of PDS 1010A scans and a computer interactive method ofreduction implemented on an Apollo 570 workstation. A pair of J and Rplates taken with the 1.2 m UK Schmidt telescope in Australia were used.Radial ellipticity variations within individual globular clusters seemto be a common phenomenon for the SMC clusters, similar to that observedin the LMC clusters where the innerparts are more elliptical than theouter ones in 95 percent of the cases. The derived ellipticities whichcorrespond to the innermost part of the cluster at radial distances nearto half-mass radii have been found to be statistically more ellipticalthan those of the LMC, known to be more elliptical than those of theGalaxy. The dynamical masses of the clusters seem to correlate withellipticities supporting the hypothesis that, either the gravitationalfield of the parent galaxy being a dominant factor affect slower theshape of the high mass clusters and/or the most massive clusters, beingdynamically younger, retain their original shape.

Photoelectric UBVRI sequences in the Magellanic Cloud clusters Lindsay 1, NGC 339, NGC 361, and NGC 1466
UBVRI sequences in three Small Magellanic Cloud (SMC) clusters Lindsay1, NGC 339, NGC 361, and in NGC 1466, which lies between the twoMagellanic Clouds, are presented. These sequences are appropriate forcharge-coupled device (CCD) coverage. Only BV standards have beenpublished in NGC 339 and UBV in NGC 1466; no sequences exist for the twoother clusters.

The asymptotic giant branch of Magellanic Cloud clusters
The present search for carbon and M-type asymptotic giant branch (AGB)stars in the 39 clusters of the Magellanic Clouds has yieldedidentifications and near-IR photometry for about 400 such stars. TheSearle et al. (1980) cluster-age-related classification scheme is abasic element of the present analysis of these data. In a C-M diagram,the cluster M stars shift steadily redward as one proceeds from clustersof SWB type I to VI, due to the increasing age of the clusters along thesequence. Luminous carbon stars are present only in SWB IV-VI clusters,and are easily distinguished from M stars by their color and luminosity.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Tucana
Right ascension:01h02m12.83s
Declination:-71°36'16.2"
Apparent magnitude:11.8

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 361

→ Request more catalogs and designations from VizieR