Home     Per cominciare     Sopravvivere Nell'Universo    
Inhabited Sky
    News@Sky     Astro Foto     La collezione     Forum     Blog New!     FAQ     Stampa     Login  

IC 351


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

Planetary Nebula Abundances and Morphology: Probing the Chemical Evolution of the Milky Way
This paper presents a homogeneous study of abundances in a sample of 79northern Galactic planetary nebulae (PNe) whose morphological classeshave been uniformly determined. Ionic abundances and plasma diagnosticswere derived from selected optical line strengths in the literature, andelemental abundances were estimated with the ionization correctionfactor developed by Kingsbourgh & Barlow in 1994. We compare theelemental abundances to the final yields obtained from stellar evolutionmodels of low- and intermediate-mass stars, and we confirm that mostbipolar PNe have high nitrogen and helium abundance and are the likelyprogeny of stars with main-sequence mass greater than 3Msolar. We derive =0.27 and discuss the implication of such ahigh ratio in connection with the solar neon abundance. We determine theGalactic gradients of oxygen and neon and foundΔlog(O/H)/ΔR=-0.01 dex kpc-1 andΔlog(Ne/H)/ΔR=-0.01 dex kpc-1. These flat PNgradients are irreconcilable with Galactic metallicity gradientsflattening with time.

Galactic Planetary Nebulae with Wolf-Rayet Nuclei III. Kinematical Analysis of a Large Sample of Nebulae
Expansion velocities (V_{exp}) of different ions and line widths at thebase of the lines are measured and analyzed for 24 PNe with [WC]-typenuclei (WRPNe), 9 PNe ionized by WELS (WLPNe) and 14 ordinary PNe. Acomparative study of the kinematical behavior of the sample clearlydemonstrates that WRPNe have on average 40-45% larger V_{exp}, andpossibly more turbulence than WLPNe and ordinary PNe. WLPNe havevelocity fields very much like the ones of ordinary PNe, rather than theones of WRPNe. All the samples (WRPNe, WLPNe and ordinary PNe) showexpansion velocities increasing with age indicators, for example is larger for low-density nebulae and also it is largerfor nebulae around high-temperature stars. This age effect is muchstronger for evolved WRPNe, suggesting that the [WC] winds have beenaccelerating the nebulae for a long time, while for non-WRPNe theacceleration seems to stop at some point when the star reaches atemperature of about 90,000 - 100,000. Non-WR nebulae reach a maximumV_{exp} ≤ 30 km s(-1) evolved WRPNe reach maximum V_{exp} about 40km s(-1) . For all kinds of objects (WRPNe and non-WRPNe) it is foundthat on average V_{exp}(N(+) ) is slightly larger than V_{exp}(O(++) ),indicating that the nebulae present acceleration of the external shells.

The abundance discrepancy - recombination line versus forbidden line abundances for a northern sample of galactic planetary nebulae
We present deep optical spectra of 23 galactic planetary nebulae, whichare analysed in conjunction with archival infrared and ultravioletspectra. We derive nebular electron temperatures based on standardcollisionally excited line (CEL) diagnostics as well as the hydrogenBalmer jump and find that, as expected, the Balmer jump almost alwaysyields a lower temperature than the [OIII] nebular-to-auroral lineratio. We also make use of the weak temperature dependence of helium andOII recombination line ratios to further investigate the temperaturestructure of the sample nebulae. We find that, in almost every case, thederived temperatures follow the relation , which is the relationpredicted by two-component nebular models in which one component is coldand hydrogen-deficient. Te(OII) may be as low as a fewhundred Kelvin, in line with the low temperatures found for thehydrogen-deficient knots of Abell 30 by Wesson, Liu and Barlow.Elemental abundances are derived for the sample nebulae from both CELsand optical recombination lines (ORLs). ORL abundances are higher thanCEL abundances in every case, by factors ranging from 1.5 to 12. Fiveobjects with O2+ abundance discrepancy factors greater than 5are found. DdDm 1 and Vy 2-2 are both found to have a very largeabundance discrepancy factor of 11.8.We consider the possible explanations for the observed discrepancies.From the observed differences between Te(OIII) andTe(BJ), we find that temperature fluctuations cannot resolvethe abundance discrepancies in 22 of the 23 sample nebulae, implyingsome additional mechanism for enhancing ORL emission. In the oneambiguous case, the good agreement between abundances derived fromtemperature-insensitive infrared lines and temperature-sensitive opticallines also points away from temperature fluctuations being present. Theobserved recombination line temperatures, the large abundancediscrepancies and the generally good agreement between infrared andoptical CEL abundances all suggest instead the existence of a coldhydrogen-deficient component within the `normal' nebular gas. The originof this component is as yet unknown.

The Chemical Composition of Galactic Planetary Nebulae with Regard to Inhomogeneity in the Gas Density in Their Envelopes
The results of a study of the chemical compositions of Galacticplanetary nebulae taking into account two types of inhomogeneity in thenebular gas density in their envelopes are reported. New analyticalexpressions for the ionization correction factors have been derived andare used to determine the chemical compositions of the nebular gas inGalactic planetary nebulae. The abundances of He, N, O, Ne, S, and Arhave been found for 193 objects. The Y Z diagrams for various Heabundances are analyzed for type II planetary nebulae separately andjointly with HII regions. The primordial helium abundance Y p andenrichment ratio dY/dZ are determined, and the resulting values arecompared with the data of other authors. Radial abundance gradients inthe Galactic disk are studied using type II planetary nebulae.

Planetary nebula distances re-examined: an improved statistical scale
The distances of planetary nebulae (PNe) are still quite uncertain.Although observational estimates are available for a small proportion ofPNe, based on statistical parallax and the like, such distances are verypoorly determined for the majority of galactic PNe. In particular,estimates of so-called `statistical' distance appear to differ byfactors of ~2.7.We point out that there is a well-defined correlation between the 5-GHzluminosity of the sources, L5, and their brightnesstemperatures, TB. This represents a different trend to thoseinvestigated in previous statistical analyses, and permits us todetermine independent distances to a further 449 outflows. Thesedistances are shown to be closely comparable to those determined using aTB-R correlation, providing that the latter trend is taken tobe non-linear.This non-linearity in the TB-R plane has not been noted inprevious analyses, and is likely responsible for the broad (andconflicting) ranges of distance that have previously been published.Finally, we point out that there is a close accord between observedtrends within the L5-TB and TB-Rplanes, and the variation predicted through nebular evolutionarymodelling. This is used to suggest that observational biases areprobably modest, and that our revised distance scale is reasonablytrustworthy.

On the O II Ground Configuration Energy Levels
The most accurate way to measure the energy levels for the O II2p3 ground configuration has been from the forbidden lines inplanetary nebulae. We present an analysis of modern planetary nebuladata that nicely constrain the splitting within the 2D termand the separation of this term from the ground4S3/2 level. We extend this method to H II regionsusing high-resolution spectroscopy of the Orion Nebula, covering all sixvisible transitions within the ground configuration. These data confirmthe splitting of the 2D term while additionally constrainingthe splitting of the 2P term. The energies of the2P and 2D terms relative to the ground(4S) term are constrained by requiring that all six linesgive the same radial velocity, consistent with independent limits placedon the motion of the O+ gas and the planetary nebula data.

12C/13C Ratio in Planetary Nebulae from the IUE Archives
We investigated the abundance ratio of 12C/13C inplanetary nebulae by examining emission lines arising from C III2s2p3Po2,1,0-->2s21S0.Spectra were retrieved from the International Ultraviolet Explorerarchives, and multiple spectra of the same object were co-added toachieve improved signal-to-noise ratio. The 13C hyperfinestructure line at 1909.6 Å was detected in NGC 2440. The12C/13C ratio was found to be ~4.4+/-1.2. In allother objects, we provide an upper limit for the flux of the 1910Å line. For 23 of these sources, a lower limit for the12C/13C ratio was established. The impact on ourcurrent understanding of stellar evolution is discussed. The resultinghigh-signal-to-noise ratio C III spectrum helps constrain the atomicphysics of the line formation process. Some objects have the measured1907/1909 Å flux ratio outside the low-electron densitytheoretical limit for 12C. A mixture of 13C with12C helps to close the gap somewhat. Nevertheless, someobserved 1907/1909 Å flux ratios still appear too high to conformto the currently predicted limits. It is shown that this limit, as wellas the 1910/1909 Å flux ratio, are predominantly influenced byusing the standard partitioning among the collision strengths for themultiplet1S0-3PoJaccording to the statistical weights. A detailed calculation for thefine-structure collision strengths between these individual levels wouldbe valuable.

Planetary nebula K1-9
The object K1-9 with strong [N Ii] emission lines was included in thePerek and Kohoutek Catalogue of Planetary Nebulae, but later it wasconsidered to be an H Ii region. Our results show that in addition tothe low-excitation emissions there are He Ii and [O Iii] emission linesin its spectrum, and the effective temperature of the central star ismore than 54 000 K. Thus we conclude that K1-9 is indeed a planetarynebula. Distribution of [O Iii] and [N Ii] emission lines reflect aring-like structure with a clear minimum in the centre of the nebula.Hydrogen lines almost fail to show the central gap. K1-9 has thebackward proper motion with systemic velocity RV = 60.2 kms-1. The central hydrogen component moves relative to thenebula with a pecular velocity of about -50 km s-1.

Characteristics of Planetary Nebulae with [WC] Central Stars
We have analyzed the plasma diagnostics (electron densities andtemperatures and abundance ratios), and the kinematics of a large sampleof planetary nebulae around [WC] stars by means of high resolutionspectra. The results have been compared with characteristics ofplanetary nebulae around WELS and non-WR central stars. We find that theproportion of nitrogen rich nebulae is larger in WRPNe than innon-WRPNe. None of the 9 nebulae around WELS in our sample showsN-enrichment. WRPNe have larger expansion velocities and/or largerturbulence than non-WRPNe demonstrating that the mechanical energy ofthe massive [WC] stellar wind largely affects the kinematical behaviorof nebulae. A weak relation between stellar temperature and expansionvelocities has been found for all kind of nebulae, indicating that oldernebulae expand faster. The effect is more important for WRPNe. Thiscould be useful in testing the evolutionary sequence [WC]-late ->[WC]-early, proposed for [WC] stars.

The relation between Zanstra temperature and morphology in planetary nebulae
We have created a master list of Zanstra temperatures for 373 galacticplanetary nebulae based upon a compilation of 1575 values taken from thepublished literature. These are used to evaluate mean trends intemperature for differing nebular morphologies. Among the most prominentresults of this analysis is the tendency forη=TZ(HeII)/TZ(HeI) to increase with nebularradius, a trend which is taken to arise from the evolution of shelloptical depths. We find that as many as 87 per cent of nebulae may beoptically thin to H ionizing radiation where radii exceed ~0.16 pc. Wealso note that the distributions of values η and TZ(HeII)are quite different for circular, elliptical and bipolar nebulae. Acomparison of observed temperatures with theoretical H-burning trackssuggests that elliptical and circular sources arise from progenitorswith mean mass ≅ 1 Msolar(although the elliptical progenitors are probably more massive).Higher-temperature elliptical sources are likely to derive fromprogenitors with mass ≅2 Msolar, however, implying thatthese nebulae (at least) are associated with a broad swathe ofprogenitor masses. Such a conclusion is also supported by trends in meangalactic latitude. It is found that higher-temperature ellipticalsources have much lower mean latitudes than those with smallerTZ(HeII), a trend which is explicable where there is anincrease in with increasing TZ(HeII).This latitude-temperature variation also applies for most other sources.Bipolar nebulae appear to have mean progenitor masses ≅2.5Msolar, whilst jets, Brets and other highly collimatedoutflows are associated with progenitors at the other end of the massrange (~ 1 Msolar). Indeed it ispossible, given their large mean latitudes and low peak temperatures,that the latter nebulae are associated with the lowest-mass progenitorsof all.The present results appear fully consistent with earlier analyses basedupon nebular scale heights, shell abundances and the relativeproportions of differing morphologies, and offer further evidence for alink between progenitor mass and morphology.

Galactic Planetary Nebulae and their central stars. I. An accurate and homogeneous set of coordinates
We have used the 2nd generation of the Guide Star Catalogue (GSC-II) asa reference astrometric catalogue to compile the positions of 1086Galactic Planetary Nebulae (PNe) listed in the Strasbourg ESO Catalogue(SEC), its supplement and the version 2000 of the Catalogue of PlanetaryNebulae. This constitutes about 75% of all known PNe. For these PNe, theones with a known central star (CS) or with a small diameter, we havederived coordinates with an absolute accuracy of ~0\farcs35 in eachcoordinate, which is the intrinsic astrometric precision of the GSC-II.For another 226, mostly extended, objects without a GSC-II counterpartwe give coordinates based on the second epoch Digital Sky Survey(DSS-II). While these coordinates may have systematic offsets relativeto the GSC-II of up to 5 arcsecs, our new coordinates usually representa significant improvement over the previous catalogue values for theselarge objects. This is the first truly homogeneous compilation of PNepositions over the whole sky and the most accurate one available so far.The complete Table \ref{tab2} is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/1029}

The relation between elemental abundances and morphology in planetary nebulae
An investigation of the variation of elemental abundances with planetarynebula morphology is of considerable interest, since it has a bearingupon how such sources are formed, and from which progenitors they areejected. Recent advances in morphological classification now enable usto assess such trends for a statistically significant number of sources.We find, as a result, that the distribution N[log(X/H)] of sources withrespect to elemental abundance (X/H) varies between the differingmorphologies. Circular sources tend to peak towards low abundancevalues, whilst bipolar nebulae (BPNe) peak towards somewhat highervalues. This applies for most elemental species, although it is perhapsleast apparent for oxygen. In contrast, elliptical sources appear todisplay much broader functions N[log(X/H)], which trespass upon thedomains of both circular and elliptical planetary nebulae (PNe).We take these trends to imply that circular sources derive fromlower-mass progenitors, bipolar sources from higher-mass stars, and thatelliptical nebulae derive from all masses of progenitor, high and low.Whilst such trends are also evident in values of mean abundance, they are much less clear. Only in the cases of He/H, N/H,Ne/H and perhaps Ar/H is there evidence for significant abundancedifferences.Certain BPNe appear to possess low abundance ratios He/H and Ar/H, andthis confirms that a few such outflows may arise from lower-massprogenitors. Similarly, we note that ratios are quite modestin elliptical planetary nebulae, and not much different from those forcircular and bipolar PNe; a result that conflicts with the expectationsof at least one model of shell formation.

The Correlations between Planetary Nebula Morphology and Central Star Evolution: Analysis of the Northern Galactic Sample
Northern Galactic planetary nebulae (PNs) are studied to disclosepossible correlations between the morphology of the nebulae and theevolution of the central stars (CSs). To this end, we have built thebest database available to date, accounting for homogeneity andcompleteness. We use updated statistical distances and an updatedmorphological classification scheme, and we calculate Zanstratemperatures for a large sample of PNs. With our study we confirm thatround, elliptical, and bipolar PNs have different spatial distributionswithin the Galaxy, with average absolute distances to the Galactic planeof 0.73, 0.38, and 0.21 kpc, respectively. We also find evidence thatthe distributions of the CS masses are different across thesemorphological groups, although we do not find that CSs hosted by bipolarPNs are hotter, on average, than CSs within round and elliptical PNs.Our results are in broad agreement with previous analyses, indicatingthat round, elliptical, and bipolar PNs evolve from progenitors indifferent mass ranges and might belong to different stellar populations,as also indicated by the helium and nitrogen abundances of PNs ofdifferent morphology.

Gas temperature and excitation classes in planetary nebulae
Empirical methods to estimate the elemental abundances in planetarynebulae usually use the temperatures derived from the [O III] and [N II]emission-line ratios, respectively, for the high- and low-ionizationzones. However, for a large number of objects these values may not beavailable. In order to overcome this difficulty and allow a betterdetermination of abundances, we discuss the relationship between thesetwo temperatures. Although a correlation is not easily seen when asample of different PNe types is used, the situation is improved whenthey are gathered into excitation classes. From [OII]/[OIII] andHeII/HeI line ratios, we define four excitation classes. Then, usingstandard photoionization models which fit most of the data, a linearrelation between the two temperatures is obtained for each of the fourexcitation classes. The method is applied to several objects for whichonly one temperature can be obtained from the observed emission linesand is tested by recalculation of the radial abundance gradient of theGalaxy using a larger number of PNe. We verified that our previousgradient results, obtained with a smaller sample of planetary nebulae,are not changed, indicating that the temperature relation obtained fromthe photoionization models are a good approximation, and thecorresponding statistical error decreases as expected. Tables 3-5, 7 and9 are only available in electronic form at http://www.edpsciences.org

High Dispersion Spectra for Planetary Nebula Studies
The extremely complicated shapes of planetary nebulae revealed throughthe high resolution radio maps, direct imaging with the Hubble SpaceTelescope and observations with adaptive optics at large telescopes, aregreatly different from their imagined simplicity long ago. To addressthe complexity in physical conditions and geometries of planetarynebulae, one must secure spectra of high spatial resolution and highdispersion. It also may require a long exposure even with a largetelescopic aperture to reach faint features. We briefly review plasmadiagnostics and a diagnostic possibility of iron ions based on ourrecent high dispersion spectroscopic work.

Study of electron density in planetary nebulae. A comparison of different density indicators
We present a comparison of electron density estimates for planetarynebulae based on different emission-line ratios. We have considered thedensity indicators [O Ii]lambda 3729/lambda 3726, [S Ii]lambda6716/lambda 6731, [Cl Iii]lambda 5517/lambda 5537, [Ar Iv]lambda4711/lambda 4740, C Iii]lambda 1906/lambda 1909 and [N I]lambda5202/lambda 5199. The observational data were extracted from theliterature. We have found systematic deviations from the densityhomogeneous models, in the sense that: Ne(ion {N}i) <~Ne(ion {O}{ii}) < Ne(ion {S}{ii}, ion {C}{iii},ion {Cl}{iii} or ion {Ar}{iv}) and Ne(ion {S}{ii}) ~Ne(ion {C}{iii}) ~ Ne(ion {Cl}{iii}) ~Ne(ion {Ar}{iv}). We argue that the lower [O Ii] densityestimates are likely due to errors in the atomic parameters used.

Helium contamination from the progenitor stars of planetary nebulae: The He/H radial gradient and the ΔY / ΔZ enrichment ratio
In this work, two aspects of the chemical evolution of 4He inthe Galaxy are considered on the basis of a sample of disk planetarynebulae (PN). First, an application of corrections owing to thecontamination of 4He from the evolution of the progenitorstars shows that the He/H abundance by number of atoms is reduced by0.012 to 0.015 in average, leading to an essentially flat He/H radialdistribution. Second, a determination of the helium to heavy elementenrichment ratio using the same corrections leads to values in the range2.8 < ΔY / ΔZ < 3.6 for Y p = 0.23 and 2.0< ΔY / ΔZ < 2.8 for Y p = 0.24, in goodagreement with recent independent determinations and theoretical models.

An analysis of the observed radio emission from planetary nebulae
We have analysed the radio fluxes for 264 planetary nebulae for whichreliable measurements of fluxes at 1.4 and 5 GHz, and of nebulardiameters are available. For many of the investigated nebulae, theoptical thickness is important, especially at 1.4 GHz. Simple modelslike the one specified only by a single optical thickness or spherical,constant density shells do not account satisfactorily for theobservations. Also an r-2 density distribution is ruled out.A reasonable representation of the observations can be obtained by atwo-component model having regions of two different values of opticalthickness. We show that the nebular diameters smaller than 10arcsec areuncertain, particularly if they come from photographic plates orGaussian fitting to the radio profile. While determining theinterstellar extinction from an optical to radio flux ratio, cautionshould be paid regarding optical thickness effects in the radio. We havedeveloped a method for estimating the value of self absorption. At 1.4GHz self absorption of the flux is usually important and can exceed afactor of 10. At 5 GHz self absorption is negligible for most of theobjects, although in some cases it can reach a factor of 2. The Galacticbulge planetary nebulae when used to calibrate the Shklovsky method givea mean nebular mass of 0.14 Msun. The statistical uncertaintyof the Shklovsky distances is smaller than a factor of 1.5. Table 1 isonly available in electronic form at http://www.edpsciences.org.

Gravity distances of planetary nebulae II. Aplication to a sample of galactic objects.
Not Available

Atomic data from the Iron Project. XLIV. Transition probabilities and line ratios for Fe VI with fluorescent excitation in planetary nebulae
Relativistic atomic structure calculations for electric dipole (E1),electric quadrupole (E2) and magnetic dipole (M1) transitionprobabilities among the first 80 fine-structure levels of Fe VI,dominated by configurations 3d3, 3d24s, and3d24p, are carried out using the Breit-Pauli version of thecode SUPERSTRUCTURE. Experimental energies are used to improve theaccuracy of these transition probabilities. Employing the 80-levelcollision-radiative (CR) model with these dipole and forbiddentransition probabilities, and Iron Project R-matrix collisional data, wepresent a number of [Fe VI] line ratios applicable to spectraldiagnostics of photoionized H II regions. It is shown that continuumfluorescent excitation needs to be considered in CR models in order tointerpret the observed line ratios of optical [Fe VI] lines in planetarynebulae NGC 6741, IC 351, and NGC 7662. The analysis leads toparametrization of line ratios as function of, and as constraints on,the electron density and temperature, as well as the effective radiationtemperature of the central source and a geometrical dilution factor. Thespectral diagnostics may also help ascertain observationaluncertainties. The method may be generally applicable to other objectswith intensive background radiation fields, such as novae and activegalactic nuclei. The extensive new Iron Project radiative andcollisional calculations enable a consistent analysis of many lineratios for the complex iron ions. The complete tables of transitionprobabilities are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html.

Emission from an Inhomogeneous Plasma: Line Intensities and Determination of Elemental Abundances in Gaseous Nebulae with Fluctuations of Te and ne
A method is proposed for determining the abundances of chemical elementsin planetary nebulae based on allowance for the actual distributionfunctions of errors in measuring line intensities. Fluctuations both intemperature and in mass density of a nebula are taken into account inthe proposed method. The results of a determination of C and Oabundances and of the amplitudes of temperature and density fluctuationsare given.

Shaping of elliptical planetary nebulae. The influence of dust-driven winds of AGB stars
We calculated a model to investigate the shaping of a PN morphologicalgroup, i.e. elliptical PNe, in terms of the so-called Interacting WindsModel. The angle-dependent mass loss generated by a dust driven wind dueto a slow rotation of the AGB star is an effective way for the shapingof PNe. The matter which is more concentrated in the equatorial regionof the star influences the flow of the fast hot wind originating fromthe central star, resulting in elliptical or weakly bipolar shapes forthe corresponding PNe. A wide range of elliptical shapes can beexplained by this model. In contrast to previous studies theangle-dependent mass loss on the AGB is not parameterized by anarbitrary formula but is taken from self-consistent dust-driven windmodels. Furthermore we discuss the influence of the differentinclination of the PNe in the sky, the interaction with an inhomogenousinterstellar medium and the possible effect of a magnetic field in oraround the old AGB star. Using detailed morphology studies with theHubble Space Telescope (HST) we discuss possible scenarios to explainthe sometimes very complex structures.

The dust content of planetary nebulae: a reappraisal
We have performed a statistical analysis using broad band IRAS data onabout 500 planetary nebulae with the aim of characterizing their dustcontent. Our approach is different from previous studies in that it usesan extensive grid of photoionization models to test the methods forderiving the dust temperature, the dust-to-gas mass ratio and theaverage grain size. In addition, we use only distance independentdiagrams. With our models, we show the effect of contamination by atomiclines in the broad band IRAS fluxes during planetary nebula evolution.We find that planetary nebulae with very different dust-to-gas massratios exist, so that the dust content is a primordial parameter for theinterpretation of far infrared data of planetary nebulae. In contrastwith previous studies, we find no evidence for a decrease in thedust-to-gas mass ratio as the planetary nebulae evolve. We also showthat the decrease in grain size advocated by Natta & Panagia(\cite{NattaPanagia}) and Lenzuni et al. (\cite{Lenzuni}) is an artefactof their method of analysis. Our results suggest that the timescale fordestruction of dust grains in planetary nebulae is larger than theirlifetime. Table~1 is only accessible in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Investigating the Near-Infrared Properties of Planetary Nebulae. II. Medium-Resolution Spectra
We present medium-resolution (R~700) near-infrared (λ=1-2.5μm) spectra of a sample of planetary nebulae (PNe). A narrow slit wasused which sampled discrete locations within the nebulae; observationswere obtained at one or more positions in the 41 objects included in thesurvey. The PN spectra fall into one of four general categories: H Iemission line-dominated PNe, H I and H_2 emission line PNe, H_2 emissionline-dominated PNe, and continuum-dominated PNe. These categoriescorrelate with morphological type, with the elliptical PNe falling intothe first group, and the bipolar PNe primarily in the H_2 and continuumemission groups. The categories also correlate with C/O ratio, with theO-rich objects generally falling into the first group and the C-richobjects in the other groups. Other spectral features were observed inall categories, such as continuum emission from the central star, C_2,CN, and CO emission, and warm dust continuum emission toward the longwavelength end of the spectra. Molecular hydrogen was detected for thefirst time in four PNe. An excitation analysis was performed using theH_2 line ratios for all of the PN spectra in the survey where asufficient number of lines were observed. From the near-infraredspectrum, we determined an ortho-to-para ratio, the rotational andvibrational excitation temperatures, and the dominant excitationmechanism of the H_2 for many objects surveyed. One unexpected resultfrom this analysis is that the H_2 is excited by absorption ofultraviolet photons in most of the PNe surveyed, although for severalPNe in our survey collisional excitation in moderate velocity shocksplays an important role. The correlation between bipolar morphology andH_2 emission has been strengthened with the new detections of H_2 inthis survey. We discuss the role of winds and photons to the excitationof H_2 in PNe, and consider some implications to the utility of H_2 as anebular diagnostic and to our understanding of PNe structure andevolution.

Observations of the [O III] lambda4931/lambda4959 Line Ratio and O^+2 Abundances in Ionized Nebulae
Recent abundance determinations using faint optical recombination linessuggest that the heavy element abundances in many ionized nebulae mightbe much higher than previously deduced from the standard collisionalline method. In the case of the O^2+/H^+ abundance ratio, thecollisional line [O III] (lambda4959+lambda5007) involved in thecomparison is about 1000 times stronger than even the strongest O IIoptical recombination line lambda4649. An alternative comparison is tothe [O III] lambda4931 line, with about the same strength as lambda4649.The I(lambda4931)/I(lambda4959) ratio, completely independent of allphysical conditions because both lines arise from the same upper level,can be determined from both theory and nebular observations. We presentnew observations of the lambda4931/lambda4959 and other line ratios byLiu et al. and discuss older published values. The agreement ofobservations and theory is excellent, andI(lambda4931)/I(lambda4959)~4.1x10^-4. In the Orion Nebula (Esteban etal. 1998), the lambda4931.08 line is partially blended with the [Fe III]lambda4930.5 line. After correction, the observed O II I(lambda4649)line in two positions is, respectively, 15% lower and 40% higher thanexpected from [O III] lambda4931, which are rather modest discrepancies.The lambda4649 line in many planetary nebulae is significantly strongerthan predicted from the lambda4931 line, corroborating results fromcomparison with the much stronger lambdalambda4959, 5007 lines. Theobservations of invariant line ratios presented here show that for linesclose in wavelength, their intensity ratios can be measured with aprecision better than 5%, even if their strengths differ by orders ofmagnitude.

Infrared Planetary Nebulae in the NRAO VLA Sky Survey
In order to construct a sample of planetary nebulae (PNe) unbiased bydust extinction, we first selected the 1358 sources in the IRAS PointSource Catalog north of J2000 declination delta=-40^deg having measuredS(25 μm)>=1 Jy and colors characteristic of PNe: detections orupper limits consistent with both S(12 μm)<=0.35S(25 μm) andS(25 μm)>=0.35S(60 μm). The majority are radio-quietcontaminating sources such as asymptotic giant branch stars. Free-freeemission from genuine PNe should make them radio sources. The 1.4 GHzNRAO VLA Sky Survey (NVSS) images and source catalog were used to rejectradio-quiet mid-infrared sources. We identified 454 IRAS sources withradio sources brighter than S~2.5 mJy beam^-1 (equivalent to T~0.8 K inthe 45" FHWM NVSS beam) by positional coincidence. They comprise 332known PNe in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulaeand 122 candidate PNe, most of which lie at very low Galactic latitudes.Exploratory optical spectroscopic observations suggest that most ofthese candidates are indeed PNe optically dimmed by dust extinction,although some contamination remains from H II regions, Seyfert galaxies,etc. Furthermore, the NVSS failed to detect only 4% of the known PNe inour infrared sample. Thus it appears that radio selection can greatlyimprove the reliability of PN candidate samples withoutsacrificingcompleteness.

Abundance gradients in the outer galactic disk from planetary nebulae
Radial abundance gradients of the element ratios O/H, Ne/H, S/H, andAr/H are determined on the basis of a sample of disk planetary nebulae.The behaviour of the gradients at large distances from the galacticcentre, R > R_0 = 7.6 kpc, is emphasized. It is concluded that thederived gradients are consistent with an approximately constant slope inthe inner parts of the Galaxy, and some flattening for distances largerthan R_0. A comparison is made with previous determinations using bothphotoionized nebulae and young stars, and some consequences ontheoretical models for the chemical evolution of the galactic disk arediscussed. Table~1 is available only electronically at the CDS(anonymousftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html)

Space-UV astronomy in planetary nebulae and their central stars.
Not Available

Electron densities in planetary nebulae, and the unusual characteristics of the [S BT II] emission zone} ] densities in planetary nebulae
We investigate the radial variation of electron densities in planetarynebulae, using values of ne deriving from the [S ii]<~mbda6717/<~mbda6730 line ratio. As a result, we are able to showthat there is a sharp discontinuity in densities of order 1.4 dex closeto nebular radii R=0.1 pc. It is proposed, as a consequence, that mostnebulae contain two primary [S ii] emission zones, with densitiesdiffering by a factor ~ 10(2) . The intensity of emission from thedenser component increases by an order of magnitude where nebulae passfrom radiation to density-bound expansion regimes, resulting in acorresponding discontinuous jump in [S ii]/Hβ line ratios. Theorigins of these changes are not entirely clear, although one mechanismis investigated whereby the superwind outflows shock interact withexterior AGB envelopes. Finally, the derived trends in ne(R)are used to determine distances for a further 262 nebulae. The resultingdistance scale appears to be comparable to that of Daub (1982) and Cahnet al. (1992).

The kinematics of 867 galactic planetary nebulae
We present a compilation of radial velocities of 867 galactic planetarynebulae. Almost 900 new measurements are included. Previously publishedkinematical data are compared with the new high-resolution data toassess their accuracies. One of the largest samples in the literatureshows evidence for a systematic velocity offset. We calculate weightedaverages between all available data. Of the final values in thecatalogue, 90% have accuracies better than 20 km s(-1) . We use thiscompilation to derive kinematical parameters of the galacticdifferential rotation obtained from least-square fitting and toestablish the Disk rotation curve; we find no significal trend for thepresence of an increasing external rotation curve. We examine also therotation of the bulge; the derived curve is consistent with a linearlyincreasing rotation velocity with l: we find V_b,r=(9.9+/-1.3)l -(6.7+/-8.5) km s(-1) . A possible steeper gradient in the innermostregion is indicated. Table 2 is available in electronic form only, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Perseo
Ascensione retta:03h47m33.14s
Declinazione:+35°02'48.5"
Magnitudine apparente:12

Cataloghi e designazioni:
Nomi esatti   (Edit)
ICIC 351

→ Richiesta di ulteriori cataloghi da VizieR